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A B S T R A C T

BrainAGE (brain age gap estimation) is a novel morphometric parameter providing a univariate score derived
from multivariate voxel-wise analyses. It uses a machine learning approach and can be used to analyse deviation
from physiological developmental or aging-related trajectories. Using structural MRI data and BrainAGE
quantification of acceleration or deceleration of in individual aging, we analysed data from 45 schizophrenia
patients, 22 bipolar I disorder patients (mostly with previous psychotic symptoms / episodes), and 70 healthy
controls. We found significantly higher BrainAGE scores in schizophrenia, but not bipolar disorder patients. Our
findings indicate significantly accelerated brain structural aging in schizophrenia. This suggests, that despite the
conceptualisation of schizophrenia as a neurodevelopmental disorder, there might be an additional progressive
pathogenic component.

1. Introduction

The clinical course of schizophrenia often involves a progressive
deterioration of cognition, as well as affective symptoms and social
functioning. Although conceptualised as a neurodevelopmental dis-
order, there is an ongoing debate on the combination of developmental
and progressive pathologies (Kochunov and Hong, 2014). Studies of
cognition and brain structure support an early neurodevelopmental
factor (Bora and Pantelis, 2015; Douaud et al., 2009), but there is also
evidence for progressive changes in some brain grey and white matter
structures, which start only after disease onset (Chiapponi et al., 2013).
Several recent studies have therefore continued to provide evidence for
an accelerated aging hypothesis, i.e. the assumption that some of the
changes seen in schizophrenia resemble those in physiological aging
(Douaud et al., 2014; Nenadic et al., 2012). A limitation in some pre-
vious studies has been the use of cross-sectional data or longitudinal
data with limited follow-up periods, which makes it difficult to assess
differences in life-span trajectories.

In this study, we use a novel method for assessing deviation of age-
related trajectories. The BrainAGE (brain age gap estimate) score was
developed to estimate the age from individual magnetic resonance
images (MRI), based on the reduction of multi-variate age-related grey
matter effects across the whole brain (Franke et al., 2010a). The dif-
ference between each individual's estimated and chronological age

results in the BrainAGE providing an indication of deviation from
normal aging trajectories. While lower scores (e.g. in adolescents or
young adults) might indicate developmental delays, a higher BrainAGE
score is indicative of accelerated aging, i.e. an individual or a group
showing grey matter structural changes that would be expected at
higher age. The BrainAGE score has been applied in several studies,
including aging effects in the elderly (Franke et al., 2014; Lowe et al.,
2016), in diabetes (Franke et al., 2013), and other studies (Luders et al.,
2016).

We tested the hypothesis, that schizophrenia patients show ac-
celerated brain structural aging as indicated by elevated BrainAGE
scores, and contrasted this to both healthy controls, as well as a psy-
chiatric control group of bipolar I disorder patients, most with a history
of psychotic symptoms resembling those of our schizophrenia patients,
yet with no presumed progressive brain structural change in order to
expand on previous findings (Koutsouleris et al., 2014).

2. Methods

2.1. Sample

We included a total of 137 subjects in this study: 45 patients with
DSM-IV-R schizophrenia (29 male, 16 female), 70 healthy controls (40
male, 30 female), and 22 patients with DSM-IV-R bipolar disorder (10
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male, 12 female). All subjects provided written informed consent to a
study protocol approved by the Ethics Committee of Jena University
Medical School, and in accordance with the Declaration of Helsinki.
Samples did not differ in age (Sz mean 33.7a, SD 10.5, range 21.4–64.9;
HC mean 33.8, SD 9.4, range 21.7–57.8; BP mean 37.7, SD 10.7, range
23.8–57.7; ANOVA, F(2,136) = 1.443; p = 0.240), gender distribution
(chi square = 2.199; p = 0.333), or handedness (laterality quotient
derived from Edinburgh handedness scale; ANOVA, F(2,134) = 1.501; p
= 0.227). Handedness distributions were as follows: Sz mean 56.97 (SD
52.79); BP mean 70.85 (SD 48.23); HC mean 72.06 (SD 41.27).

Patients were recruited from in- and out-patient services and re-
ferring hospitals. Diagnosis according to DSM-IV-R criteria was estab-
lished through either case review or SCID-I interview by a board-cer-
tified psychiatrist (I.N.). Schizophrenia patients were scanned while in
remission, and concurrent psychopathology was assessed using the
SANS and SAPS. Bipolar disorder patients were euthymic at the time of
scanning, defined by a) absence of a concurrent affective episode (de-
pressive, hypomanic, manic, or mixed episode), and b) a maximum
score of 7 on either the Young Mania Rating Scale (YMRS) or Hamilton
Depression Scale (HAMD). Out of the 22 bipolar disorder patients, 17
had bipolar I disorder, and a history of psychotic symptoms (albeit not
at the time of scanning).

Healthy subjects were screened, prior to scanning, using a healthy
questionnaire, in order to exclude a history of psychiatric disorders,
psychiatric or psychological treatment or counselling, first-degree
psychotic or affective disorders in their families, as well as substance
abuse. Further general exclusion criteria for all participants were active
substance abuse disorders, neurological or major medical conditions, a
history of traumatic brain injury with loss of consciousness.
Conventional voxel-based morphometry analyses of part of this cohort
have been published previously, including clinical details of patients
(Nenadic et al., 2015), and the samples have been extended for the
present analysis; patients with schizophrenia were on antipsychotic
medication, while patients with bipolar disorder were on mood stabi-
lisers and in some cases antispychotics, as described previously
(Nenadic et al., 2015).

2.2. MRI scanning and BrainAGE score analysis

For each subject, we acquired high-resolution anatomical MRI data
on a 3 T Siemens Tim Trio MRI system (Siemens, Erlangen, Germany)
using a T1-weighted MPRAGE sequence (TR 2300 ms, TE 3.03 ms, TI
900 ms, alpha 9°) with 192 contiguous slices covering the entire brain,
slice thickness 1 mm, field of view: 256 × 256, isotropic voxel re-
solution of 1 × 1 × 1 mm3.

All MRI scans passed both a visual inspection for exclusion of gross
artefacts, as well as an automated quality control (implemented in the
VBM8 package; http://dbm.neuro.uni-jena.de/vbm8/).

BrainAGE scores were calculated for each individual according to a
protocol described previously (Franke et al., 2012, 2010a). The
BrainAGE approach comprises well established and fully automated
processing of structural MR images to aggregate the complex, regions-
specific, and non-linear patterns of age-related changes across the
whole brain into one single value, thus providing a reference curve for
healthy brain aging. The algorithm makes use of the pattern in the
whole brain image and also takes into account inter-regional de-
pendencies. A BrainAGE score> 0 indicates accelerated aging.

As described previously (Franke et al., 2010b), preprocessing of the
T1-weighted images was done using the SPM8 package (http://www.
fil.ion.ucl.ac.uk/spm/) and the VBM8 toolbox (http://dbm.neuro.uni-
jena.de), running under Matlab. All T1-weighted images were corrected
for bias-field inhomogeneities, then spatially normalized and seg-
mented into grey matter (GM), white matter (WM), and CSF within the
same generative model (Ashburner and Friston, 2005). The segmenta-
tion procedure was further extended (Gaser, 2009) by accounting for
partial volume effects (Tohka et al., 2004), applying adaptive maximum

a posteriori estimations (Rajapakse et al., 1997), and using a hidden
Markov Random Field model (Cuadra et al., 2005). Preprocessing the
images further included affine registration and smoothing with 4-mm
full-width-at-half-maximum (FWHM) smoothing kernels. Spatial re-
solution was set to 4 mm. Data were further reduced by applying
principal component analysis (PCA) in order to reduce computational
costs, to avoid severe over-fitting, as well as to get a robust and widely
applicable age estimation model, utilizing the “Matlab Toolbox for
Dimensionality Reduction” (http://ict.ewi.tudelft.nl/~lvandermaaten/
Home.html).

2.2.1. Age estimation framework
The BrainAGE framework utilizes a machine-learning pattern re-

cognition method, namely relevance vector regression (RVR; Tipping,
2001). It was recently developed to model healthy brain aging and
subsequently estimate individual brain ages based on T1-weighted
images (Franke et al., 2010b). As suggested previously (Franke et al.,
2010b), a linear kernel was chosen, since age estimation accuracy was
shown not to improve when choosing non-linear kernels. Thus and in
contrast to support vector machines, parameter optimization during the
training procedure was not necessary.

In general, the age regression model is trained with chronological
age and preprocessed whole brain structural MRI data (as described
above) of the training sample, resulting in a complex model of healthy
brain aging. Put in other words, the algorithm uses those whole-brain
MRI data from the training sample that represent the prototypical ex-
amples within the specified regression task (i.e., healthy brain aging).
Additionally, voxel-specific weights are calculated that represent the
importance of each voxel within the specified regression task (i.e.,
healthy brain aging). For an illustration of the most important features
(i.e., the importance of voxel locations for regression with age) that
were used by the RVR to model normal brain aging and more detailed
information please refer to (Franke et al., 2010b).

Subsequently, the brain age of a test subject can be estimated using
the individual tissue-classified MRI data (as described above), ag-
gregating the complex, multidimensional aging pattern across the
whole brain into one single value. In other words, all the voxels of the
test subject's MRI data are weighted by applying the voxel-specific
weighting matrix. Then, the brain age is calculated by applying the
regression pattern of healthy brain aging and aggregating all voxel-wise
information across the whole brain. The difference between estimated
and chronological age will reveal the individual brain age gap estima-
tion (BrainAGE) score, with positive values indicating accelerated
structural brain aging and negative values indicating decelerated
structural brain aging. Consequently, the BrainAGE score directly
quantifies the amount of acceleration or deceleration of brain aging. For
example, if a 70 years old individual has a BrainAGE score of +5 years,
this means that this individual shows the typical structural pattern of a
75 years old individual.

For statistical analysis, we considered a univariate analysis of var-
iance (ANOVA) to assess effects of factor group (Sz, BP, HC), and fol-
lowed-up these results with two-tailed T-Tests testing each group
against another one. (Fig. 1).

3. Results

We found a significant effect of group on the BrainAGE score
(ANOVA, p = 0.009). Mean values of BrainAGE score for total samples
and split by gender are given in Table 1. Post hoc T-Tests showed sig-
nificant differences schizophrenia patients and healthy controls (p =
0.01287), as well as between schizophrenia patients and bipolar dis-
order patients (p = 0.0097), and in both cases, schizophrenia patients
had a higher mean of the BrainAGE score. There was no difference
between bipolar disorder patients and healthy controls (p = 0.34). An
additional analysis of gender is given in Fig. 2.
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4. Discussion

Our findings support the hypothesis that accelerated brain aging is
evident from structural imaging in schizophrenia, and that this seems to
be relatively specific, as we did not find a similar change in a subgroup
of psychotic bipolar disorder patients. This not only corroborates pre-
vious initial findings on similar metrics in schizophrenia (Koutsouleris
et al., 2014), but also extends them to test the comparison with another
psychotic disorder with a similar clinical phenotype.

Most previous studies of morphometry in schizophrenia vs. bipolar
disorder have used standard voxel-based morphometry to compare each
brain region (or rather voxels) separately, resulting in studies on the
pattern of brain structural deficits compared to healthy controls
(Maggioni et al., 2016). There is some heterogeneity across studies, but

more importantly, these studies have mostly focused on the regional
differences and overlaps, rather than on issues like neurodevelopmental
vs. progressive changes.

Although schizophrenia has been conceptualised as a neurodeve-
lopmental disorder, and this remains the major research paradigm, our
findings add to the current research by providing additional support for
a progressive component (Kochunov and Hong, 2014). It should be
stressed that this is not necessarily an indication of a neurodegenerative
process. As recent findings indicate there is an overlap of structural age-
related changes in physiological aging with those seen in major psy-
chiatric disorders including schizophrenia (Douaud et al., 2014). While
this would suggest that accelerated aging might be inherent to several
psychiatric disorders, our findings suggest relative specificity for schi-
zophrenia as compared to a subgroup of bipolar patients. This subgroup
was selected to be similar in many phenotypic aspects, including early
disease onset and psychotic symptoms. Hence, the mere diathesis for
psychosis does not seem sufficient to explain our findings.

Several recent studies have suggested accelerated brain aging in
schizophrenia. A most recent study using longitudinal MRI data and a
support vector regression approach found evidence for a difference
between estimated brain age and chronological age, in particular
during the first years after disease onset (Schnack et al., 2016). Simi-
larly, there has been evidence for such effects in white matter, with a
most recent study showing not only reductions of fractional anisotropy
(FA), but also a steeper age-related decline in patients as compared to
healthy controls (Kochunov et al., 2016). A functional MRI study using
resting state data found evidence for an age-related decline in the local
efficiency of a fronto-parietal and a cingulo-opercular network, which
would support a functional impact on particular networks (Sheffield
et al., 2016).

There are several explanations for accelerated aging, both neuronal
and systemic. The latter include effects induced by conditions like
diabetes, which has been shown to affect brain aging in the elderly, as
demonstrated by BrainAGE scores (Franke et al., 2013). While none of
our patients or controls suffered from diabetes, metabolic syndrome is
more prevalent in patients with schizophrenia compared to the general
population (Vancampfort et al., 2015), and its effects on brain aging
deserve further study. Interestingly, there is also evidence for ac-
celerated aging in non-neuronal tissue, as shown through analysis of
telomere length in leukocytes (Czepielewski et al., 2016; Polho et al.,
2015).

Limitations of our study include medication effects; however, these
would be expected to affect certain regions, but not the entire brain.
Also, narrowing down inclusion criteria for bipolar disorder patients
resulted in a smaller cohort. Finally, we also need to consider that the
accelerated aging process might affect only part of certain subgroups of
schizophrenia patients (Nenadic et al., 2012).

Taken together, our findings challenge a pure neurodevelopmental
model, suggesting that the pathogenesis of schizophrenia might involve
several stages including abnormal development as well as aging.
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