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RIntelligent behavior is not a one-dimensional phenomenon. Individual differences inhuman cognitive abilitiesmight
be therefore described by a ‘cognitive manifold’ of intercorrelated tests from partially independent domains of gen-
eral intelligence and executive functions. However, the relationship between these individual differences and brain
morphology is not yet fully understood. Here we take a multivariate approach to analyzing covariations across in-
dividuals in two feature spaces: the low-dimensional space of cognitive ability subtests and the high-dimensional
spaceof local graymatter volumeobtained fromvoxel-basedmorphometry. By exploiting apartial least squares cor-
relation framework in a large sample of 286 healthy children and adolescents, we identify directions of maximum
covariance betweenboth spaces in terms of latent variablemodeling.Weobtain an orthogonal set of latent variables
representing commonalities in the brain–behavior system,which emphasize specific neuronal networks involved in
cognitive ability differences. We further explore the early lifespan maturation of the covariance between cognitive
abilities and local gray matter volume. The dominant latent variable revealed positive weights across widespread
gray matter regions (in the brain domain) and the strongest weights for parents' ratings of children's executive
function (in the cognitive domain). The obtained latent variables for brain and cognitive abilities exhibitedmoderate
correlations of 0.46–0.6. Moreover, the multivariate modeling revealed indications for a heterochronic formation of
the association as a process of brain maturation across different age groups.

© 2013 Published by Elsevier Inc.
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A major goal of human development research is to identify the
functional and structural processes that are predictive of individual
cognitive skills (Tau and Peterson, 2010). magnetic resonance imag-
ing (MRI) and computational morphometry have become invaluable
tools for in-vivo exploration of the underlying changes in healthy
brain maturation (Mietchen and Gaser, 2009; Toga and Thompson,
2003). On the one hand, research focused on commonalities shared
by children with typical pediatric development has revealed that
the general course of brain structure development is distinct in differ-
ent brain regions and tissue types (Giedd and Rapoport, 2010;
Lenroot and Giedd, 2006). Studies observed inverted-U shaped and
curvilinear trajectories in gray matter volume (GMV) Gogtay et al.,
2004; Lenroot et al., 2007 and cortical thickness (CT) (Shaw, 2008;
Shaw et al., 2006; Sowell et al., 2004), and rather continuous in-
creases in white matter volume (WMV) into early adulthood (Ostby
et al., 2009; Tamnes et al., 2010c). In addition, trajectories of brain
maturation exhibited a substantial sexual dimorphism with delayed
peaks in male GMV (Lenroot et al., 2007) and CT (Shaw, 2008)
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development. On the other hand, there is a growing interest in the in-
dividual variability of structural maturational patterns and its relation
to differences in cognitive abilities and behavior during adulthood
(Deary et al., 2010; Kanai and Rees, 2011). The general intelligence
factor, i.e. the g-factor, possesses impressive predictive validity for
lifespan educational and occupational success, as well as social mobil-
ity (Deary, 2012). However, the causes and neurodevelopmental
mechanisms underlying individual differences of stable cognitive
abilities in adults are still unresolved. Studies exploring general intel-
ligence in relation to brain morphology have been conducted in chil-
dren and adolescents (Karama et al., 2009, 2011; Lange et al., 2010;
Luders et al., 2011; Shaw et al., 2006; Tamnes et al., 2011; Wilke et
al., 2003) and younger and middle-aged adults (Haier et al., 2004;
Luders et al., 2007, 2008, 2009b; Narr et al., 2007; Tamnes et al.,
2011). In addition, recent studies have focused on more specific cog-
nitive abilities and skills in the verbal domain (Porter et al., 2011;
Ramsden et al., 2011), working memory (Østby et al., 2011, 2012),
and executive functions (Tamnes et al., 2010c). A broad set of cogni-
tive processes contributes to what is commonly referred to as execu-
tive functions. Among others, this includes planning, working
memory, problem solving and inhibition of responses (Chan et al.,
2008). There is neuropsychological and non-clinical evidence for a re-
lation of executive functions to general intelligence (Ackerman et al.,
2005; Ardila et al., 2000; Friedman et al., 2008; Salthouse et al., 2003;
of multivariate cognitive abilities and local brain structure in children
age.2013.05.088
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Shelton et al., 2009), but as suggested by Friedman et al. (2006) the
current intelligence measures do not sufficiently assess these execu-
tive control abilities as a contributing factor to ‘intelligent behavior’.
Thus, in order to capture the complexity of individual differences in
cognitive abilities, tests should assess both domains of intelligence
and executive function.

Partial least squares framework

Recent studies have emphasized the potential of multivariate analy-
ses for brain development data in general (Bray et al., 2009) and brain
maturation in particular (Dosenbach et al., 2010; Hoeft et al., 2011;
Lerch et al., 2006; Misaki et al., 2012). The partial least squares (PLS)
approach is a class of latent variable algorithms initially originated by
Herman Wold (Wold, 1975, 1982) to model associations between two
or more blocks of indicators of a system by means of latent variables
(Geladi, 1988; Hoeskuldsson, 1988; Wegelin, 2000). PLS has proven to
be particularly usefulwhen the number of observations ismuch smaller
than the number of indicators. In addition to applications in psychology,
economics, chemometrics and medicine, PLS was successfully intro-
duced to identify associations between multiple behavioral predictors
and whole brain activity correlates derived from PET and fMRI
(Koutsouleris et al., 2010; Krishnan et al., 2011; McIntosh and
Lobaugh, 2004; McIntosh et al., 1996, 2004). There are several advan-
tages of PLS for the purpose of modeling the relationship among local
brain structure and multivariate cognitive abilities:

Firstly, the PLS framework naturally extends the classical latent
variable approach to cognitive ability tests (Bartholomew, 2004;
Carroll, 1993; Jensen, 1998; Spearman, 1904) in a way that directly
includes structural properties of brains in the very process of model-
ing individual differences. In particular, neuroimaging studies that
investigate multivariate aspects of individual differences of cognitive
abilities (e.g. (Barbey et al., 2012; Colom et al., 2006, 2007, 2010;
Ebisch et al., 2012; Gläscher et al., 2010; Karama et al., 2011)) often
apply an analysis procedure with the following two separate steps.
(A) At first a measurement model of multiple cognitive tests is
used to obtain valid estimates of specific cognitive domains or to ex-
tract higher order intelligence factors. (B) Afterwards the obtained
domain- or factor scores are related to the structural brain data
using the general linear model in a mass-univariate manner. Using (A)
and (B) basically corresponds to decomposing the unknown multi-
variate mapping F: C → B of the ‘cognitive abilities space’ to the
‘brain structure space’ into separate univariate mappings for each
voxel/vertex and cognitive domain/factor. By applying PLS we pro-
pose a fundamentally different approach that jointly models individ-
ual differences in both multivariate spaces in a single generative
model of latent variables. Instead of exploring neuronal correlates
of a-priori fixed cognitive constructs this generalizes the covariance
to amultivariate problemwith free weightings in both spaces. Moreover,
the major difference is that the optimal feature weighting in both spaces
is driven by the maximum covariances (see e.g. Shawe-Taylor and
Cristianini, 2004) instead of maximizing (error-free) variance in factor
analysis or latent variable modeling of cognitive tests.

Secondly, the PLS approach is an exploratory method that affords
the analysis of structural patterns through the entire brain. PLS over-
comes the limitation of the numbers of observed variables in structural
equationmodeling (SEM) and thus allows the analysis ofMR-based im-
ages with tens or hundreds of thousands of voxels or vertices without
a-priori selection of certain ROIs.

Thirdly, PLS models overcome a limitation of mass-univariate
approaches by increasing the sensitivity to detect subtle or spatially
distributed effects in brain signals (McIntosh and Lobaugh, 2004). Un-
like the general linear model (Monti, 2011, for review), PLS explicitly
allows modeling effects of numerous strongly collinear or near-linear
dependent indicators (Wegelin, 2000), which is especially true for
cognitive ability tests (Jensen, 1998).
Please cite this article as: Ziegler, G., et al., Partial least squares correlation
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Fourthly, in contrast to the alternative and very similar canonical
correlation analysis (CCA) (Borga et al., 1992, for a unified framework
of PLS and CCA), the coefficients derived from PLS modeling were
found to be easier to interpret and more stable (Wegelin, 2000).
This is mainly because the coefficients in PLS models express the bi-
variate contribution of each indicator to the latent variables which
is in contrast to the mutually dependent coefficients derived from
CCA that ‘behave’ more like multiple linear regression coefficients.

The aim of the current study was to identify latent variables un-
derlying multiple cognitive abilities and local brain structure in a
large sample of 286 healthy children and adolescents from the NIH
study of normal brain development. By using partial least squares
correlation (PLSC) and voxel-based morphometry (VBM) we ex-
plored gray matter networks that covaried with a broad set of 19 abil-
ities tests in the domains of intelligence, processing speed, and
executive functioning. Finally, we explored age-related maturational
differences of the covariance in age groups of younger and older chil-
dren, and adolescents.

Materials and methods

Modeling cognitive abilities and local brain structure in the PLS framework

Though the PLS framework is much more general we here only
focus on the two-block case and use it to jointly analyze individual
differences in a set of behavioral predictors and spatial brain vari-
ables. We assume the cognitive data and the brain data is represented
in two matrices (or blocks) X and Y, respectively l × m and l × n. The
columns of X correspond to cognitive test data, e.g. total IQ scores or
verbal span. The columns of Y contain voxelwise structural brain fea-
tures after normalization and registration, in particular local gray
matter volume maps obtained from VBM. In order to avoid variance
differences that may bias the PLS modeling steps, we assume the col-
umns of X and Y to be standardized features, e.g. z-scores. The main
idea here is that individual differences observed in X and Y are gener-
ated by two latent variables, say ζ and ξ, respectively. In other words,
the columns in X and Y are assumed to be indicators for the a-priori
unknown variables ζ and ξ which we estimate from the data. Impor-
tantly, ζ and ξ are assumed to covary, in order to represent the
cross-covariance of the indicators XTY at the level (of error free) la-
tent variables, which makes PLSC a special case of structural equation
modeling (SEM). A graphical path model representation of the above
outlined idea is depicted in Fig. 1A. Our goal to identify directions of
maximum covariance in the multivariate observations X and Y can
be further formalized:

σ1 ¼ Cov ζ1; ξ1ð Þ ¼ max
jjujj¼jjvjj¼1

Cov Xu;Yvð Þ: ð1Þ

The desired solution for weightings (or often called saliences) u
and v are the first left and right singular vectors of the cross-block co-
variance matrix XTY. We here applied the SVD approach to imple-
ment the criteria (1) that directly calculates the left and right
singular vectors of the covariance matrix XTY. Thus, the main results
of this paper further exploit the PLS-SVD algorithm. However, the
readers particularly interested in other iterative and kernel-based ap-
proaches to PLSC are referred to Supplemental material S1. This also
includes the comparison of the underlying orthogonality constraints
for PLS-SVD and PLS-NIPALS and the similarity of analysis results of
particular PLSC implementations in our NIH dataset.

Application to the NIH study of healthy brain development

Sample
We used a subsample of the NIH MRI study of normal brain devel-

opment available in the NIH MRI Pediatric MRI Data Repository,
of multivariate cognitive abilities and local brain structure in children
age.2013.05.088
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Fig. 1. An overview of the applied PLSC methodology. (A) A single latent variable model is used to explain the covariance of the cognitive variables X and brain variables Y. The
latent variables ζ1 and ξ1 reflect the corresponding covariance. The loadings γ and δ are obtained from regression of the latent variables on the data. The resulting residual variances
�xi and �yi might be correlated and can be analyzed using deflation. (B) The multiple latent variable model after r deflation steps is shown. This results in a sequence of latent vari-
ables ζi and ξi, i = 1,…, r and new regression residuals �xi

rð Þ and �yi
rð Þ . (C top). (PLSC Step A) Algorithmic structure of the PLSC analysis to analyze covariance structure of data X and

Y. The outer loop is used to deflate either the data, the covariance (for PLS-SVD) or the kernel matrices, and the inner loop calculates the corresponding first left and right singular
vectors of the covariance XTY. (C bottom) (PLSC Step B) Model selection and validation is performed using permutations testing and bootstrapping respectively. Permutation testing
reveals the covariances σi under random permutations of rows of X leaving Y unchanged. Parametric bootstrapping is used to assess the stability of the latent variable model pa-
rameters by providing confidence intervals.

Table 1 t1:1

t1:2Demographical description of the sample. Q2

t1:3Age group
(years)

Subjects Subjects from site (1/2/3/
4/5/6)

Females
(%)

FSIQ mean
(std)

t1:46–9.5 94 17/16/12/14/12/23 45 (54) 113 (14.3)
t1:59.5–13.5 101 9/24/13/24/10/21 55 (54) 112 (11.1)
t1:613.5–18.5 91 12/14/24/17/10/14 51 (49) 109 (11.2)
t1:7Total 286 38/54/49/55/32/58 151 (54) 111 (12.3)

t1:8Age groups with number of subjects, gender, as well as mean and standard deviation of
t1:9general intelligence of the analyzed subsample from the NIH MRI repository. The scan-
t1:10ning sites from 1 to 6 are the Children's Hospital Boston, Cincinnati Children's Hospital
t1:11Medical Center, University of Texas Health Science Center at Houston, University of
t1:12California in LA, Children's Hospital of Philadelphia, and Washington University in St.
t1:13Louis, respectively. FSIQ denotes the full scale IQ obtained from Wechsler Abbreviated
t1:14Scale of Intelligence (WASI).
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(https://nihpd.crbs.ucsd.edu). The NIH MRI Pediatric project focuses
on brain development in healthy typically developing infants, children
and adolescents from a demographically balanced population based
sampling (Evans and Group, 2006, for overview). The neuroimaging
data was acquired in multiple pediatric centers and included a variety
of MR-based sequences and protocols. Moreover, apart from exploring
the general course of normal brain development an important part of
the project is to reveal the correlation to cognitive and behavioral
measures. The screening procedures excluded subjects with a family
history of inherited neurological disorders or a lifetime history of
Axis I psychiatric disorders, abnormalities during perinatal develop-
ment, birth complications, physical growth problems, neurological
or specific psychiatric disorders. In order to study subjects with nor-
mal pediatric development, the behavioral screening excluded sub-
jects with child behavior checklist (CBCL) T-scores b 70, full scale
WASI IQ b 70, orWoodcock–Johnson III Achievement Battery subtest
scores b 70. A detailed description of the sample acquisition and ex-
clusion criteria can be found in Evans and Group (2006) and here
https://nihpd.crbs.-ucsd.edu-/nihpd-/info-/Documents/. We started
with a sample from release 4 of the NIH MRI study objective 1
(Almli et al., 2007; Evans and Group, 2006) of the children and ado-
lescents. The full sample included 433 subjects with ages 4.5–
18 years. However, due to our focus on cognitive abilities, the sample
was reduced to 394 subjects between 6 and 18 years of age with
comparable protocols of cognitive testing (see below for details).
After checking the completeness of the explicitly rich cognitive test
battery, the sample strongly reduced to 307 fully available datasets.
We observed variations in raw data slice resolution of the images.
These differences strongly influenced the quality of the image prepro-
cessing results. Thus we discarded further 21 scans due to substantial
artifacts in segmentation, registration, or nonlinear between-subjects
normalization. Finally, the accepted sample consisted of 286 children
(151 females, 135 males) with ages 6–18.5 years (M = 11.6, SD =
Please cite this article as: Ziegler, G., et al., Partial least squares correlation
and adolescents, NeuroImage (2013), http://dx.doi.org/10.1016/j.neuroim
3.5). The demographic details and descriptive statistics of the analyzed
sample are presented in Table 1.

Cognitive ability space
In addition to the MR imaging data, the NIH study of normal brain

development included approximately 3 h of neuropsychological assess-
ments of an individual's cognition and behavior using multiple psycho-
metric instruments (Waber et al., 2007). In order to cover a broad
spectrumof children's and adolescents' intellectual abilities, we here in-
cluded a rich set of psychometric measures from the domains of intelli-
gence, processing speed and executive function. All analyzed test scores
stem from reliable and validated instruments that were applied using
age appropriate test forms. Firstly, we included vocabulary, similarities,
matrix reasoning, and block design subtests from the Wechsler Abbre-
viated Scale of Intelligence (Wechsler, 1999). These measures are typi-
cally applied to obtain a brief general intelligence assessment.
Additionally, we usedmeasures of processing speed and verbalworking
memory using the coding task and the digit span task of the Wechsler
of multivariate cognitive abilities and local brain structure in children
age.2013.05.088
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Intelligence Scale for Children (WISC-III) and the corresponding score
form the Wechsler Adult Intelligence Scale (WAIS-III) for the older ad-
olescents (Wechsler, 1991, 1997). Secondly, Cambridge Neuropsycho-
logical Test Battery (CANTAB) is a collection of computerized,
non-verbal touchscreen tests for cognitive assessment. Originally devel-
oped for diagnosis of cognitive deficits in dementia (Fray and Robbins,
1996), it also became a valid tool for testing children (Luciana, 2003).
We included the executive function errors and stages of the
Intra-Extra Dimensional Set Shift task (IED) (a computerized version
of the Wisconsin Card Sorting test), the Spatial Span (SSP), and Spatial
Working Memory (SWM) strategy and responses scores. Thirdly, the
Behavior Rating Inventory of Executive Function (BRIEF)was developed
to capture the real-world behavioral manifestations of executive dys-
function (Gioia and Isquith, 2004; Gioia et al., 2002a,b, 2010). In con-
trast to the above performance tests BRIEF uses parents' ratings of
their children's everyday executive task performance. We included
the metacognition subtests monitor, organization of materials,
plan/organize, working memory, initiate as well as the behavioral
regulation subtests emotional control, shift, and inhibition. The
resulting set of 19 cognitive ability measures (6 WASI/WISC, 5
CANTAB, 8 BRIEF) were raw test scores, i.e. usually obtained from
sums over items. As the explicit aim of this paper is to estimate the
loadings within the cognitive ability space in a single model with
the brain data, no separate measurement model was applied. Nota-
bly, all BRIEF subtest scores, the CANTAB IED number of errors and
both CANTAB SWM scores are originally inverted, i.e. higher values
originally indicated deficits. In order to simplify interpretation of re-
sults in terms of a cognitive manifold of abilities, the sign of all
inverted variables was switched. The resulting 19 cognitive measures
are positive correlates of intellectual ability and executive function.
Before subsequent statistical analysis, an outlier detection procedure
was applied, replacing extreme values (i.e.more than 3σ) by regression
imputation using the highest correlating covariate of the remaining
data. The descriptive statistics and the correlationmatrix of the recoded
cognitive ability parameters are provided in Table 2.

Local brain structure space
A detailed overview of the acquisition protocols of the NIH MRI Pe-

diatric study can be found here (http://pediatricmri.nih.gov/nihpd/
info/proto-cols.html). The available sample included data from both
primary protocols and fallback protocols with either 1 mm or 3 mm
slice thickness, respectively. The preprocessing and analysis steps
were done in SPM8 (Wellcome Trust Centre for Neuroimaging, London,
UK, http://www.fil.ion.ucl.ac.uk/spm) using the VBM8 toolbox (http://
dbm.neu-ro.uni-jena.e/vbm).Duringpreprocessing the imageswere in-
terpolated to an isotropic resolution of 1.5 mm. The images were (1)
corrected for bias-field inhomogeneities, (2) registered using a linear
(i.e. 12-parameter affine) and a nonlinear diffeomorphic transformation
(Ashburner, 2007), and (3) stripped of non-brain tissue in the
T1-weighted images. Thereafter, some results from the SPM8 unified
segmentation package (Ashburner and Friston, 2005) were used to ini-
tialize a VBM8 algorithm that classifies brain tissue in graymatter (GM),
white matter (WM), and cerebrospinal fluid (CSF). In order to avoid in-
troducing a systematic bias into the segmentation routine by using the
standard adult reference data (Wilke et al., 2003) the Template-O-Matic
toolbox (Wilke et al., 2008)was used to generate a sample-specific tem-
plate. The VBM8 segmentation contains partial volume estimation
(PVE) to account for mixed voxels with two tissue types (Tohka et al.,
2004). The algorithm uses an adaptive maximum a posteriori (AMAP)
approach (Rajapakse et al., 1997) and a subsequent application of a hid-
denMarkov random fieldmodel (Cuadra et al., 2005).Within the AMAP
estimation the local variations of the parameters (means and variance)
aremodeled as slowly varying spatial functions. This accounts for inten-
sity inhomogeneities and other local variations. We also included a
further quality check using covariance-based inhomogeneity measures
of the sample as implemented in the VBM8 toolbox. Thereafter, the
Please cite this article as: Ziegler, G., et al., Partial least squares correlation
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resulting gray matter volume images were multiplied voxelwise by
the determinants of Jacobian matrices from SPM's nonlinear transfor-
mations before subsequent statistical analysis on local volumes. This
modulation is done to adjust for local volume changes introduced by
the nonlinear normalization. Finally, a smoothing step was performed
using a Gaussian kernel of 8 mm full width at half maximum
(FWHM). In order to analyze brain regions that have a high probability
to contain gray matter tissue, the images were masked by a binary
image indicating voxelwise sample mean of gray matter volume
(GMV) exceeding absolute threshold of 0.2. All analyses were
performed on GMV images obtained using the above steps. After
thresholding 315,004 gray matter voxels entered the PLSC modeling.
Thus, the voxels served as potentially correlated indicators of structural
gray matter network properties in a 315,004 dimensional local brain
structure space. The spatial adjacency of voxels was not explicitly
used for feature construction but is implicitly reflected by their covari-
ance structure. The brain data will be further denoted with Y.

Effects of confounding variables
Using an observational design to investigate the covariance of

brain structure and cognitive abilities, we had to limit the potential
influences of covariates. In contrast to a cross-sectional analysis of
age-related effects, the analysis of the ability-brain covariation sets
a different focus and potentially allows indirect statistical effects be-
tween the triplet of age, brain structure, and the cognitive abilities
(Salthouse, 2011). A crucial point for neuroanatomic correlates of in-
telligence is that they might be influenced by confounds, e.g. brain
size (McDaniel, 2005; Rushton and Ankney, 2009; Taki et al., 2012),
global brain parameters (Peelle et al., 2012), gender (Luders et al.,
2006, 2009a; Narr et al., 2007; Schmithorst, 2009), and particularly
chronological age. This is especially true for studies on early lifespan
cognitive abilities, because the size of the expected effects due to in-
dividual maturational differences is substantial (Gogtay et al., 2004;
Lenroot et al., 2007). In order to focus on individual differences in
the local gray matter networks that are independent of age and global
brain differences, we applied partialing models to increase the
specificity of observed covariations. Global variance removal also
decorrelates the local structural features, avoiding the global parame-
ter differences to dominate the regional brain–behavior covariance
patterns (see also Supplemental material Fig. S4). This increases the
sensitivity to detect local network differences related to cognitive
abilities. In addition to obtain the local gray matter segments, VBM8
was used to estimate the absolute tissue volumes in subject's native
space. We then corrected the data for cubic age, linear gender, total
intracranial volume (using TICV = TGM + TWM + TCSF), and total
gray matter volume (TGM) effects using multiple linear regression.
Cognitive data X and also the brain data Y will denote the corrected
data after application of a partialing model including age, age2, age3,
gender, and TICV, and TGM.

PLSC procedure, model selection and validity
After preprocessing and correcting the NIH sample data for con-

founds, the above introduced PLS-SVD algorithm was applied to the
19 cognitive tests scores X with the VBM gray matter images Y. An
important issue for appropriate PLSC modeling of the brain–behavior
covariance is model selection and statistical inference. Full deflation
of the cross-block covariance using the above methods results in a
saturated PLSC model, i.e. some of the higher-degree latent variables
simply fit random covariations of the errors of the blocks. Therefore,
nonparametric permutation testing was suggested to assess the sig-
nificance of the latent variable contribution to the brain–behavior co-
variance (McIntosh and Lobaugh, 2004). We repeated the PLSC
algorithm under 2000 random permutations of the individual cogni-
tive ability data with respect to the brain data. To account for biases
due to flipping, reordering and rotations in the resampled data, the
observed weightings were transformed to the initial PLSC solution
of multivariate cognitive abilities and local brain structure in children
age.2013.05.088
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Table 2t2:1

t2:2 Cognitive test descriptive statistics and correlation matrix. Q3

t2:3 Mean 56.27 55.14 10.67 56.32 56.04 10.78 6.05 −174.59 −32.73 8.20 −22.41 −45.95 −49.24 −16.65 −47.04 −47.97 −45.29 −45.74 −46.61
t2:4 Std 7.84 9.39 2.90 8.65 9.39 2.64 1.68 26.96 6.55 0.94 13.86 8.84 8.69 3.96 8.26 8.31 8.02 7.78 7.11
t2:5 Min 30 31 4 28 28 3 2 −233 −45 5 −73 −78 −71 −28 −71 −74 −73 −70 −72
t2:6 Max 80 80 19 79 80 19 9 −82 −10 9 0 −28 −33 −11 −36 −35 −36 −36 −36
t2:7

t2:8 Reasoning Block Processing
speed

Vocabulary Similarities Verbal
WM span

SSP
span

SWM
responses

SWM
strategy

IED shift
stages

IED shift
error

Monitor Organize
material

Plan/
organize

Working-
memory

Initiate Emotional
control

Shift Inhibit

t2:9 Reasoning 1.00 0.41 0.13 0.42 0.34 0.13 0.22 0.22 0.18 0.11 0.24 0.05 −0.07 0.03 0.07 −0.05 −0.02 −0.01 −0.01
t2:10 Block 0.41 1.00 0.25 0.31 0.31 0.12 0.31 0.18 0.16 0.19 0.23 0.11 −0.08 0.02 0.08 0.03 0.04 0.07 0.08
t2:11 Processing speed 0.13 0.25 1.00 0.21 0.23 0.15 0.15 0.09 0.10 0.15 0.25 0.14 0.04 0.19 0.17 0.07 0.09 0.12 0.14
t2:12 Vocabulary 0.42 0.31 0.21 1.00 0.54 0.29 0.19 0.15 0.14 0.23 0.32 0.06 −0.05 0.09 0.14 0.14 −0.01 0.01 0.08
t2:13 Similarities 0.34 0.31 0.23 0.54 1.00 0.24 0.14 0.13 0.13 0.16 0.31 0.08 −0.09 0.04 0.08 0.00 −0.08 −0.08 0.12
t2:14 Verbal WM span 0.13 0.12 0.15 0.29 0.24 1.00 0.18 0.13 0.06 −0.04 0.04 0.09 −0.01 0.06 0.13 0.08 0.00 0.01 0.10
t2:15 SSP span 0.22 0.31 0.15 0.19 0.14 0.18 1.00 0.08 0.06 0.05 0.14 0.05 −0.02 0.04 0.08 −0.04 0.00 0.00 0.03
t2:16 SWM responses 0.22 0.18 0.09 0.15 0.13 0.13 0.08 1.00 0.81 −0.14 0.21 0.03 0.02 0.08 0.14 0.02 0.07 0.06 0.10
t2:17 SWM strategy 0.18 0.16 0.10 0.14 0.13 0.06 0.06 0.81 1.00 −0.10 0.22 0.01 −0.04 0.04 0.07 0.02 0.02 −0.02 0.02
t2:18 IED shift stages 0.11 0.19 0.15 0.23 0.16 −0.04 0.05 −0.14 −0.10 1.00 0.54 0.07 −0.04 0.06 −0.04 0.05 −0.04 0.08 0.05
t2:19 IED shift error 0.24 0.23 0.25 0.32 0.31 0.04 0.14 0.21 0.22 0.54 1.00 0.18 −0.03 0.14 0.10 0.12 0.01 0.13 0.20
t2:20 Monitor 0.05 0.11 0.14 0.06 0.08 0.09 0.05 0.03 0.01 0.07 0.18 1.00 0.48 0.72 0.63 0.61 0.59 0.57 0.65
t2:21 Organize material −0.07 −0.08 0.04 −0.05 −0.09 −0.01 −0.02 0.02 −0.04 −0.04 −0.03 0.48 1.00 0.57 0.51 0.50 0.35 0.29 0.36
t2:22 Plan/organize 0.03 0.02 0.19 0.09 0.04 0.06 0.04 0.08 0.04 0.06 0.14 0.72 0.57 1.00 0.74 0.68 0.51 0.53 0.54
t2:23 Working-memory 0.07 0.08 0.17 0.14 0.08 0.13 0.08 0.14 0.07 −0.04 0.10 0.63 0.51 0.74 1.00 0.59 0.45 0.49 0.58
t2:24 Initiate −0.05 0.03 0.07 0.14 0.00 0.08 −0.04 0.02 0.02 0.05 0.12 0.61 0.50 0.68 0.59 1.00 0.55 0.51 0.50
t2:25 Emotional control −0.02 0.04 0.09 −0.01 −0.08 0.00 0.00 0.07 0.02 −0.04 0.01 0.59 0.35 0.51 0.45 0.55 1.00 0.64 0.59
t2:26 Shift −0.01 0.07 0.12 0.01 −0.08 0.01 0.00 0.06 −0.02 0.08 0.13 0.57 0.29 0.53 0.49 0.51 0.64 1.00 0.55
t2:27 Inhibit −0.01 0.08 0.14 0.08 0.12 0.10 0.03 0.10 0.02 0.05 0.20 0.65 0.36 0.54 0.58 0.50 0.59 0.55 1.00

t2:28 Mean, standard deviation, and range of the analyzed subtest raw scores (top). Pearson correlation matrix of 19 cognitive ability test scores included in the PLSC analysis (bottom). Reasoning, block, processing speed, vocabulary, similarities,
t2:29 and verbal WM span are subtests from theWASI/WISC battery. SSP span, SWM responses, SWM strategy, IED shift stages, and IED shift error refer to CANTAB's computerized testing subtests of executive functions. Monitor, organize material,
t2:30 plan/organize, working-memory, initiate, emotional control, shift, and inhibit are BRIEF's subtest for executive dysfunction.
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Fig. 2. Partial least squares correlation (PLSC) analysis of 19 cognitive ability scores and local gray matter volume obtained from VBM in 286 children and adolescents, ages 6–18.
The brain and cognitive data was first corrected using an appropriate partialing model with age, age2, age3, gender, and TICV, TGM then the PLSC estimation was performed using a
PLS-SVD approach. Permutation testing revealed the significance of the latent variables. All latent variables with p b 0.05 are presented. The cognitive and brain weighting patterns
from the PLSC analysis are shown for latent variables 1, 2 and 5. The cognitive ability subtest weightings are standardized in terms of correlations with the corresponding PLSC's
brain scores. The red error bars indicate confidence intervals for each subtest's correlations to latent brain scores using 500 parametric bootstrap samples. The observed correlations
of latent brain and cognitive scores (i.e. corr(ζi,ξi)) ranged from 0.46 to 0.6.
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using procrustes transformations (Milan and Whittaker, 1995).
P-values were calculated estimating the probability of observing
equal or higher covariances σr = Cov(ζr, xir) for each of the corre-
sponding latent variables under permutations of the data. Finally, un-
less stated otherwise the subset of latent variables with p b 0.05 was
considered to significantly contribute to the covariance. A related
issue of PLSC modeling is the validation and confidence in the ob-
served model parameters (Krishnan et al., 2011). PLSC weights and
scores imply a covariance of cognitive ability and brain structure
which is sensitive to sampling variability and thus requires a
cross-validation technique (Efron and Tibshirani, 1994). As suggested
by McIntosh et al. (McIntosh and Lobaugh, 2004) we applied para-
metric bootstrapping to obtain standard errors for the cognitive abil-
ity correlations with the latent scores thbfζr and ξr. We used 500
bootstrap samples by sampling with replacement and further
assessed symmetric 95% confidence intervals, i.e. μ ± 1.96σ of the
correlation parameter distributions.

Analysis of effects of maturation
In order to realize a group PLSC to analyze age-related differences

of the structure–cognition covariance we first reordered rows in the
cognitive ability scores and brain data matrices according to 3 age
groups with 6–9.5 (n1=94), 9.5–13.5 (n2 = 101), and 13.5–18
(n3 = 91) years, and also obtained: Xi and Yi, i = 1, …, 3. The aim
was to use age specific cognitive weightings and age independent
brain network weightings (which might improve interpretation),
we adapted the above maximum covariance criterion (1):

σ1 ¼ max
jjujj¼jjvjj¼1

Cov
X1u1
X2u2
X3u3

2
4

3
5;

Y1
Y2
Y3

2
4

3
5v

0
@

1
A: ð2Þ
Please cite this article as: Ziegler, G., et al., Partial least squares correlation
and adolescents, NeuroImage (2013), http://dx.doi.org/10.1016/j.neuroim
This corresponds to searching for first left and right singular vec-
tors of the covariance matrix obtained from row-wise concatenation
of age group covariance matrices.

Cgr ¼
XT
1Y1

XT
2Y2

XT
3Y3

2
64

3
75 ¼ UΣVT ¼

XR

r¼1

σ r

u1r
u2r
u3r

2
4

3
5vTr

This favors the application of the above PLS-SVD algorithmwith ex-
tended behavioral data vectors. Thus, for our purpose of age-group co-
variance analysis we applied the PLS-SVD algorithm and model
validation procedures to the above covariance matrix C. Separation of
the extended cognitive weights, and recalculation of loadings revealed
the group specific results.

Results and discussion

Whole group PLSC analysis

We first focused on the PLSC analysis of the whole group of 286
children and adolescents after removing age effects and confounding
influences. We directly analyzed the 19 test scores in relation to
voxel-based gray matter segments. Fig. 2 shows the obtained PLSC
model with latent variable 1 (LV1), (p = 0.003, 29.6%), LV2 (p = 0.03,
18.0%), and LV5 (p = 0.02, 5.5%) showing a significant contribution to
the covariance. The dominant LV1 exhibited widespread positive
weightings in bilateral medial and superior temporal gyri (including
the IPC), frontomedial, anterior and posterior cingulate regions, the
precuneus, and early visual areas. In addition, the frontal area 10, the
left inferior andmiddle frontal gyri, the insular cortex, themedial tempo-
ral lobe and the left fusiform gyrus showed high weightings. The corre-
sponding cognitive profile revealed more emphasized correlations of
of multivariate cognitive abilities and local brain structure in children
age.2013.05.088
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LV1 to BRIEF's executive function scores and minor correlations to intel-
ligence subtests block, similarities, and CANTAB's IED errors. The ob-
served pattern of gray matter volume correlations to multiple cognitive
performance scores is in line with observed abilities differences in the
large study of Shaw et al. (2006) that revealed positive correlations be-
tween IQ and fronto-temporal cortical thickness in the late childhood
around age 11. Although the investigated set of tests did not exclusively
focus on general intelligence or IQ, LV1 supportsfindings of early lifespan
studies on morphometric correlates of cognitive abilities in the anterior
cingulate cortex (Frangou et al., 2004; Karama et al., 2011; Wilke et al.,
2003), frontal (Frangou et al., 2004; Karama et al., 2011; Pangelinan et
al., 2011; Shaw et al., 2006) and temporo-parietal cortex (Karama et
al., 2011; Lange et al., 2010; Shaw et al., 2006). Notably, in contrast to
classical paper pencil tests the BRIEF scores represent parents' ratings
of children's day to day executive function, organization, planning,work-
ing memory skills etc. BRIEF's intercorrelations with WASI test scores
were found to be low, therefore, WASI and BRIEF represent rather inde-
pendent aspects of abilities differences (see Table 2).

According to a prevailing theoretical network model for human
cognitive ability differences in adults, the Parieto-Frontal Integration
Theory (P-FIT), neuronal processing of intelligent behavior is distrib-
uted over a wide network of brain regions that are involved in differ-
ent stages of information processing, i.e. recognition, abstraction,
problem-solving, and response selection (Jung and Haier, 2007, for
review). Although LV1 reflects BRIEF more strongly than WASI, the
cortical gray matter regions exhibit a considerable overlap with the
proposed set of P-FIT brain regions or modules. We additionally ob-
served a substantial contribution of the hippocampus and the medial
temporal lobe gray matter to the dominant LV1. However, the P-FIT
theory clearly focuses on higher-level cognitive processes, and thus
the existing studies on neuronal substrates of general intelligence
measures in the early lifespan (in contrast to studies on elderly sub-
jects) often restrict their analyses to cortical gray matter. A few stud-
ies have also suggested the significance of medial temporal lobe
regions for childhood cognitive ability in terms of IQ (Deboer et al.,
2007; Schumann et al., 2007) and working memory (Østby et al.,
2012). The study by Østby et al. (2012) implicated individual differ-
ences in children's hippocampal volume as contributing to their
long term recall performance after 1 week. We speculate that these
effects might be involved in BRIEF's real world planning and metacog-
nition skills found to be highly weighted in LV1.

After projection in the orthogonal subspace from the dominant
LV1, the second latent variable LV2 indicated a more mixed pattern,
including both positive and negative weightings. In particular, LV2
was found to have positive weightings in subcortical gray matter, es-
pecially the caudate nucleus, putamen, and adjacent insular regions,
the inferior and superior parietal cortex, precentral area 6, and parts
of the superior and middle frontal gyri. However, the remaining cor-
tical regions also showed negative weightings, especially in the left
prefrontal cortex and the temporo-parietal regions. Thus, after ac-
counting for the covariance explained by the dominant LV1, those
subjects more similar to this mixed pattern tended to have higher
WASI scores and slightly lower BRIEF skills in everyday executive
function. LV2 exemplifies that interpretation of multivariate analysis
across several cognitive domains and brain regions is more complex
than for univariate analysis because the effects only make sense
using the whole pattern, i.e. the cognitive profile and the spatial
map. However, LV2's pattern might indicate a different role of striatal
and most cortical regional volumes for individual differences in cog-
nitive ability. Notably, the intercorrelations of WASI and CANTAB
with BRIEF's test scores are small. Therefore, although both CANTAB
and BRIEF focus on executive functions, they represent rather inde-
pendent sources of variance in our cognitive ability space (see also
cognitive tests correlation matrix in Table 2). We suppose LV2's pat-
tern is likely to be driven by two effects that are almost independent
in the cognition block: (a) subjects with higher WASI and CANTAB
Please cite this article as: Ziegler, G., et al., Partial least squares correlation
and adolescents, NeuroImage (2013), http://dx.doi.org/10.1016/j.neuroim
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test scores tended to have higher striatal gray matter volume, and
(b) subjects with higher BRIEF scores seemed to have more wide-
spread cortical gray matter and slightly less striatal volume. Recent
neuroimaging evidence suggests that the basal ganglia, and particu-
larly the dorsal striatum, might be directly involved in higher-level
cognitive processes, executive functions and decision making
(Balleine et al., 2007; Cools, 2008, 2011; van Schouwenburg et al.,
2012). In this line of research van Schouwenburg et al. (2010) used
dynamic causal modeling (DCM) (Friston et al., 2003) to demonstrate
the functional involvement of striatal circuits in high-level cognitive
control. In addition, striatum's association with cognitive ability is
supported by structural MRI studies on macroanatomy. Dorsal striatal
volume was found to be positively associated with, and additionally
predicted, individual differences in children's cognitive control task
performance (Chaddock et al., 2010, 2012). Moreover, young adults'
initial dorsal striatal volume predicted performance improvement
and skill transfer in a video game that explicitly focused on cognitive
flexibility (Erickson et al., 2010). These studies support our observa-
tion of a positive LV2 weighting for WASI and CANTABs with the
basal ganglia volume. The observed pattern of a slightly negative as-
sociation between local striatum volume and BRIEF's scores is sug-
gested by one recent study by Lange et al. (2010). Finally, we also
observed the higher order LV5 (p b 0.05). The observed LV5 indicates
that higher values of parietal and lateral temporal gray matter net-
works are associated with individual differences in the block design
score, spatial span and processing speed. These regions have been im-
plicated in the P-FIT networks for intelligence differences (Jung and
Haier, 2007). However, LV5's contribution to the whole cross-block
covariance should be interpreted keeping in mind the much stronger
exploratory power of dominant LV1, i.e. (5.5% for LV5 vs. 29.6% for
LV1). Taken together, our PLSC analysis revealed generalizable (spa-
tial and cognitive) patterns and latent variables that contribute to sta-
ble individual differences in brain morphology and cognitive ability in
the early lifespan. The PLSC models of VBM data revealed latent vari-
able correlations of moderate size 0.46–0.6, which exceeds correla-
tion sizes observed in common univariate models (e.g. with IQ Shaw
et al., 2006) and supports pattern based analysis in future studies.

Age group PLSC analysis

Individual differences in a cross-sectional observational design
might be confounded with age differences. We did account for this
possibility by applying appropriate partialing before PLSC modeling,
removing the cubic effects of age. Consequently, the above whole
group PLSC model approximated a residualized ‘ average structure–
cognition covariance’. However, the developmental processes that
cause individual differences in macroanatomy and cognition to co-
vary are likely to undergo changes across developmental stages. Stud-
ies using univariate analyses of gray matter networks have provided
evidence for maturational changes of the structure–cognition covari-
ance (Karama et al., 2009; Wilke et al., 2003). Thus, a further focus of
this work was how the multivariate structure–cognition covariance
evolves as a function of age. In order to reintroduce age differences,
we extended the above PLSC approach to estimate the covariance
separately for ages 6–9.5 years (young), 9.5–13.5 years (middle)
and 13.5–18 years (old) in one model (see also Table 1). Firstly, we
applied within age group partialing to avoid biased estimates due to
the remaining age differences. Secondly, a modified age-group PLSC
model was applied. It explicitly allowed group specific cognitive
scores and weightings exhibiting the maximal covariance to local
gray matter volumes for each group separately. In order to make la-
tent variables and the corresponding gray matter networks compara-
ble, the LV's brain weightings were assumed to be identical across the
age groups. Notably, this is not restrictive because each age group can
vary with respect to its contribution to a certain LV, i.e. which can be
strong with high weightings or low with weightings around zero.
of multivariate cognitive abilities and local brain structure in children
age.2013.05.088
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Consequently, if there are group invariant brain patterns we would
obtain the age-specific cognitive weightings as intended. Otherwise,
the age group variant brain patterns are simply captured by other LVs.

Permutation testing revealed an increased number of contributing
LVs compared to the above whole group model (LV1-3 and LV7-10,
p b 0.05). It indicates that by allowing some age differences to be
modeled (or parameterized), more complex models of the multivari-
ate structure–cognition covariance seem to be appropriate. For rea-
sons of space, simplicity, and explained covariance, the first four
significant LVs are shown in Fig. 3. Notably, all LVs were found to ex-
hibit group differences, especially comparing the young and
middle-aged groups to the adolescents. The inter-correlations of
brain weightings from latent variables LV1 (p b 0.001, 13%) and LV3
(p = 0.003, 7.7%) indicated similarity to the LV1 and LV2 of the
whole group PLSC model, respectively. The corresponding gray mat-
ter networks were thus consistently observed in our PLSC analyses.

LV1 revealed a late increasing relationship of individual differ-
ences in gray matter networks and everyday executive functions as
measured by BRIEF. This is in line with the hypothesis of a protracted
development of executive functions that continues through child-
hood into adolescence and early adulthood (Blakemore and
Choudhury, 2006; Jurado and Rosselli, 2007, for review). However,
the widespread pattern of LV1 does not support an exclusively high
relevance of frontal lobe regions for these tasks and also suggests an
important role of posterior parts of the brain (Tamnes et al., 2010c,
for discussion of this point).

LV2 exhibited a reversal of the estimated covariance between the
younger and middle age groups. That means, the pattern of ‘more is
more’ with respect to local gray matter volumes and BRIEF scores
U
N
C
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switched to a ‘more is less’ pattern. Similar childhood changes of
the direction of the covariance were also observed for measures of
general intelligence in a univariate analysis of cortical thickness (see
e.g. Fig. 1 in Shaw et al., 2006). We speculate that this might be related
to the onset of cortical fine-tuning of networks in terms of cellular
processes that increase efficiency of information processing, e.g. prun-
ing, dendritic changes and myelination. LV3, similar to LV2 in the
whole group PLSC model, showed strong positive weightings in the
striatum and mixed positive and negative weightings in other cortical
networks. The childhood behavioral correlations seemed to ‘move’
from BRIEF to WASI and CANTAB during early adolescence. As
discussed for the whole group PLSC model, this variable might indi-
cate a mixture of effects. Inspecting the results of the age-group
model, we additionally observed indications for a developmental
change of the role of basal ganglia and cortical volumes in cognitive
ability.

Interestingly, the posterior gray matter network of LV7 showed
specific association to CANTAB's spatial working memory and set
shifting tests (see also Tamnes et al., 2010c). In particular, this latent
variable was positively associated with gray matter volume in the
precuneus, the posterior cingulate (PCC) and retrosplenial (RSC) cor-
tices, the lingual gyrus, the inferior and superior parietal cortices, the
left fusiform and parahippocampal gyri. As recently reviewed by
Kravitz et al. (2011), human visuo-spatial processing in the ‘dorsal
stream’ is likely to be driven by three complex subsystems of anatom-
ical and functional connectivity projecting from the parietal cortex to
either prefrontal, premotor or medial temporal lobe regions respec-
tively (Margulies et al., 2009). The observed brain pattern emphasizes
individual gray matter volume differences in the latter subsystem of
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medial pathways (via PCC and RSC) that are suggested to relay and
integrate spatial information from the occipito-parietal system to
the hippocampal formation and the parahippocampal cortex
(Kravitz et al., 2011). The contribution of these regions to SWM per-
formance differences is also supported by human functional MRI
studies of navigation (Grön et al., 2000; Maguire et al., 1998), visual
motion (Antal et al., 2008), and visual short-term memory (Mitchell
and Cusack, 2008; Todd and Marois, 2004). In contrast to the above
LVs, the LV7 covariance here exhibits a ‘fade out’ pattern, with higher
covariance in children compared to adolescent subjects. This early
childhood covariance to posterior networks would be in line with
the anterior posterior gradient of structural maturation (e.g. shown
for cortical thickness in Shaw, 2008). Occipito-parietal visual systems
are found to mature earlier compared to more fronto-temporal
networks.

There are limitations of the current study that could be addressed in
future work. Firstly, the available cognitive tests WASI/WISC, CANTAB
and BRIEF in the NIH data repository have been applied assuming the re-
liability and validity of the psychometric tools (see also Waber et al.,
2007). When using PLSC as an exploratory tool for brain analysis with
multiple cognitive scores, there are no assumptions about the measure-
ment model in the age groups. However, we cannot exclude that ob-
served age group differences are also related to inherent limitations of
the cognitive assessments tools, e.g. variability of sensitivity and validity
between age groups. Artifacts from test invariancewould be rather likely
to occur in single subtests and not influence the whole observed pattern
across the 19 scores. This is supported by the inspection of the correla-
tion matrices of the cognitive scores, which indicated no substantial
age-related changes (see Supplemental material Table S3). Secondly,
the applied PLSC scheme is cross-sectional and uses cubic age models
for residualized analysis of individual differences. Therefore, we cannot
separate brain–cognition covariance that is due to already existing differ-
ences (from earlier maturation periods) and brain–cognition covariance
due to ongoing structural changes, e.g. pruning in adolescents. Further
studies might disentangle these contributions to our findings by using
analysis of individual structural trajectories obtained from longitudinal
data. Thirdly, the spatial brain features in our PLSCmodelwere restricted
to local graymatter segments obtained fromVBM. Additionally, efficien-
cy of cognitive processing is expected to require a fast communication
between these gray matter regions (Tamnes et al., 2010a,b). It would
be promising to also include othermodalities, e.g. local whitematter vol-
umes (WMV) and diffusion tensor imaging (DTI) data. Along with this
idea, a recent unsupervised learning method called link independent
component analysis (Link ICA) was suggested to jointly analyze individ-
ual and age-related differences across MRI modalities (Groves et al.,
2011, 2012). The PLSC deflations result in orthogonal latent variables
while ICA aims at finding spatially-independent non-Gaussian sources,
which might be less restrictive. Finally, analogous to basic factor
analytic methods, maximizing the covariance in PLSC comes at the cost
of having most cognitive test scores load on all latent variables. Future
studies might also focus on appropriate ‘non-oblique’ rotation tech-
niques within the PLSC framework, which transform the observed pat-
tern of brain–behavior covariance weights into a ‘simple structure’.

Conclusion

Here we consideredmultivariate PLSCmodels to explore the rela-
tionship between cognitive ability patterns and the fine-grained dif-
ferences in local brain anatomymeasured with MRI. We investigated
these joint variations in healthy children and adolescents and ob-
served that cognitive patterns explain substantial amounts of struc-
tural differences in the maturing brain. The multivariate approach
revealed latent variable correlations between morphological patterns
and cognitive profiles, suggesting more complex brain–behavior
models. Moreover, the findings suggest dynamic changes of the multi-
variate structure–cognition covariance as a process of brainmaturation.
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Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2013.05.088.
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