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Abstract: Surface reconstruction methods allow advanced analysis of structural and functional brain
data beyond what can be achieved using volumetric images alone. Automated generation of cortical
surface meshes from 3D brain MRI often leads to topological defects and geometrical artifacts that must
be corrected to permit subsequent analysis. Here, we propose a novel method to repair topological
defects using a surface reconstruction that relies on spherical harmonics. First, during reparameteriza-
tion of the surface using a tiled platonic solid, the original MRI intensity values are used as a basis to
select either a “fill” or “cut” operation for each topological defect. We modify the spherical map of the
uncorrected brain surface mesh, such that certain triangles are favored while searching for the bounding
triangle during reparameterization. Then, a low-pass filtered alternative reconstruction based on spheri-
cal harmonics is patched into the reconstructed surface in areas that previously contained defects. Self-
intersections are repaired using a local smoothing algorithm that limits the number of affected points to
less than 0.1% of the total, and as a last step, all modified points are adjusted based on the T1 intensity.
We found that the corrected reconstructions have reduced distance error metrics compared with a
“gold standard” surface created by averaging 12 scans of the same brain. Ninety-three percent of the
topological defects in a set of 10 scans of control subjects were accurately corrected. The entire process
takes 6-8 min of computation time. Further improvements are discussed, especially regarding the use
of the T1-weighted image to make corrections. Hum Brain Mapp 00:000-000, 2010.  © 2010 Wiley-Liss, Inc.
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INTRODUCTION

In many analyses of structural and functional brain
mapping data, it is often desirable to deform the gray mat-
ter (GM) sheet into an inflated brain surface or a sphere.
For example, the functional subdivisions of the cerebral
cortex are the target of most functional brain mapping
studies, but they lie within a convoluted sheet that is so
highly folded, at least in humans, that it is challenging to
align the cortical anatomy across subjects without perform-
ing further modeling of the cortex. As such, 2 decades of
surface-based cortical mapping research have been
devoted to finding convenient methods to generate cortical
surface reconstructions as well as cortical feature identifi-
cation, alignment, and surface-based statistical analyses for
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Figure I.
Common problems include topological defects and artifacts. Topological defects such as handles (a)
and holes (b) prevent the surface from being homeomorphic with a sphere. By contrast, artifacts (c,
highlighted in red) may permit a correct (spherical, genus-zero) topology but nonetheless are ana-
tomically incorrect and should ideally be eliminated during topology correction. [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.com.]

comparing cortical signals across subjects and groups
[Fischl et al., 1999b; MacDonald et al., 2000; Shattuck and
Leahy, 2001; Thompson and Toga, 1996; Thompson et al.,
2004; Van Essen, 2004, 2005].

As well as improving the power and localization of func-
tional imaging analyses [Formisano et al., 2004], surface-
based analyses have also discovered patterns of cortical
thickness alterations in numerous diseases, such as Alzhei-
mer’s disease [Lerch et al., 2005, Thompson et al., 2004],
schizophrenia [Bearden et al., 2007a; Narr et al., 2005;
Thompson et al., 2009], epilepsy [Lin et al., 2007], major
depression [Ballmaier et al.,, 2004], and genetic syndromes
such as Williams syndrome and 22q deletion syndrome
[Bearden et al., 2007b; Thompson et al., 2005]. Reconstructed
cortical surface models can also provide the basis to under-
stand subtle and distributed morphometric features that
may be altered in disease such as gyrification [Gaser et al.,
2006], surface curvature [Tosun et al., 2006], surface metric
tensors [Wang et al., 2010], and other surface abnormalities.

When analyzing cortical surface data from multiple sub-
jects, a common coordinate system must be imposed to
extract meaningful comparisons between the subjects. Sev-
eral coordinate systems have been proposed and used,
including flattened representations [Qiu et al., 2007; Van
Essen and Drury, 1997], hyperbolic spaces generated using
circle packing methods [Hurdal and Stephenson, 2009], slit
maps [Wang et al., 2008], and punctured disks [Wang
et al.,, 2009], but the most commonly used is a spherical
coordinate system, as the cortical surface is roughly home-
omorphic to a sphere. Besides intersubject analysis, para-
metric models of the cortical surfaces can be used to
enable a more precise intersubject registration by enforcing
a higher order matching of sulcal features or geometric
landmarks lying in the cortex [Desai et al., 2005; Hinds
et al., 2008; Lui et al., 2006, 2007; Thompson et al., 2004;
Wang et al., 2005].

However, the surface to be analyzed should be genus zero
(e.g., contain no topological defects) before being inflated or
mapped to a sphere. It is fairly straightforward to cut and
flatten a surface that has a spherical topology, but this task
becomes nearly impossible when there are topological
defects, making it necessary to use some approach for topo-
logical correction. Some methods extract the cortex by gradu-
ally deforming a spherical surface into the configuration of
the cortex, so a spherical topology is maintained and guaran-
teed [MacDonald et al., 2000]. However, many methods iden-
tify the cortex using a voxel-level segmentation by applying
a classification function to each voxel independently, and
because of segmentation errors, there is no guarantee that the
initially created surfaces from the tissue segmentation maps
are genus zero (i.e., homotopic to a sphere). Correcting these
topological defects is a necessary prerequisite for intersubject
analysis. As such, several topology correction approaches
have been advocated using local “manifold surgery” or Reeb
graph methods [Abrams et al., 2002, 2004; Fischl et al., 2001].

There are three possible representations of the cortical
surface: the interface between GM and white matter (WM);
the interface between GM and cerebrospinal fluid
(CSF), also called the pial surface; and the central surface
(CS), which is approximately the midpoint between the
GM/WM and GM/CSF interfaces. Compared with the
WM/GM or GM/CSF interfaces, the CS provides an inher-
ently less distorted representation of the cortical surface
[Van Essen and Maunsell, 1980]. However, the intensity
differential across the WM/GM interface in the T1 image
is a source of useful information for labeling topological
defects for either fill or cut operations and improving the
mesh quality after topological correction.

Because of noise, partial volume effects, and other artifacts
during the MRI data acquisition process, a brain surface
mesh reconstructed from volumetric data often contains
topological defects and geometric artifacts. Figure 1 shows
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some examples of topological defects and geometric arti-
facts for a surface generated using the standard FreeSurfer
pipeline, i.e., the intensity gradient in the T1 image is used
to classify tissue and a marching cubes algorithm gener-
ates the surface at the boundary between the gray and
white tissue segmentation maps [Fischl et al., 2001].

Topological defects can include handles (Fig. la) and
holes (Fig. 1b) that prevent the surface from being homeo-
morphic with a sphere. In terms of topology, handles and
holes are equivalent; however, the two may be differenti-
ated in that during the topology correction process, handles
should be cut but the holes should be filled. The number of
defects in a given surface can be calculated using the Euler
characteristic, where an Euler characteristic of 2 represents
a surface that is homeomorphic with a sphere.'

Artifacts (Fig. 1c) are topologically correct sharp peaks
(usually due to noise) that do not reflect true features of
cortical anatomy. All of these errors need to be repaired
before the surface can be inflated to a sphere. Because arti-
facts usually contain sharper edges than the rest of the cort-
ical surface, they can be minimized via a smoothing
process. However, accurately correcting topology defects is
more difficult. Compared with previously proposed meth-
ods, we propose the use of regional spherical harmonic rep-
resentations as a simple, straightforward method to correct
these topological errors and geometrical artifacts.

Prior Approaches to Correct Topological Defects

There are two general approaches used to address topol-
ogy defects. The first approach is to start with a surface
with the desired topology and deform it to match the
brain surface (a top-down approach). The surface repre-
sentation may either be discrete (such as a mesh) or con-
tinuous, and there are a number of approaches to
deforming this initial surface. In this category are included
active contours or deformable models. There is a wealth of
literature on variations of this method applied to brain
data; for a review, see [Mclnerney and Terzopoulos, 1996;
Montagnat et al., 2001]. Methods include fast marching
algorithms [Bazin and Pham, 2005a,b, 2007a,b], level-set
methods [Bischoff and Kobbelt, 2002, 2003, 2004; Xiao
et al., 2003], minimization of an energy functional [Caselles
et al., 1997; Dale et al.,, 1999; Karacali and Davatzikos,
2003; Kass et al., 1988; MacDonald et al., 2000], competitive
forces [Delingette and Montagnat, 2001; Mclnerney and
Terzopoulos, 2000], a system of constraints [Lachaud and
Montanvert, 1999], simplex meshes [Delingette, 1999],
homotopically deformable regions [Mangin et al., 1995],
and diffeomorphic transformations of a digitized anatomi-
cal template [Christensen et al., 1994]. As the cortical sur-
face is highly convoluted, a disadvantage of these

The Euler characteristic is defined for discrete surfaces (such as
polyhedra) according to the formula v — e + f, where v, ¢, and f are
the number of vertices (corners), edges, and faces, respectively, in a
given polyhedron.

approaches is that the fitting function is highly nonlinear
and may require extensive computations. Furthermore, the
resulting surface may not represent all of the deep sulci
accurately [Fischl et al.,, 2001]. This is because typically
high curvature regions are penalized during the evolution
of the template, to make the extractions more robust to
high frequency noise, and the resulting enforcement of
regularity may restrain the evolving surface from correctly
flowing into the deep sulci.

The second approach is to retrospectively correct the
topology after the brain data have been segmented into WM
and GM (a bottom-up approach). These corrections may be
achieved either in volume space or on a mesh surface gener-
ated using an algorithm such as marching cubes [Lorensen
and Cline, 1987]. A common volume-based solution is to use
graph-based methods to detect topology defects and find the
minimal modification required to correct the defect [Abrams
et al., 2002, 2004; Chen and Wagenknecht, 2006; Han et al.,
2002, 2004; Jaume et al., 2005; Shattuck and Leahy, 2001].

It is also possible to find the minimal modification
directly on the surface [Guskov and Wood, 2001]. By
selecting just the minimal set, it is possible that the result-
ing correction is not identical to the changes that would be
made by an experienced operator. Another possible solu-
tion is to filter the WM membership until the largest trian-
gular mesh has a geometry homeomorphic to a sphere [Xu
et al., 1999]. A drawback of this approach is that the filter-
ing process essentially smoothes the WM and some ana-
tomical information can be lost. In volume space, it is also
possible to construct a skeleton to describe the shape of the
volume, correct cycles within the skeleton, and then regrow
the skeleton to form a topologically correct object [Zhou
et al., 2007]. Finally, another volume-based solution is based
on region-growing algorithms to correct the initial segmen-
tation [Kriegeskorte and Goebel, 2001; Ségonne et al., 2003].

Surface-based methods often do not correct large han-
dles appropriately but are appropriate for small topologi-
cal defects. One method to circumvent this problem is to
measure the defect size and then correct small defects in
the surface and large defects in volume space [Wood
et al., 2004]. The original MRI data may also inform retro-
spective topological corrections on the surface. The correc-
tion can then be carried out using purely surface-based
methods such as genetic algorithms [Ségonne et al., 2005],
retessellation of the defect [Fischl et al., 2001], or nonsepa-
rating loops with opening operators [Segonne et al., 2007].

These methods vary widely in speed and accuracy. For
deformable surfaces, the speed is usually related to the com-
plexity of the fitting function. For retrospective correction
methods, pure surface-based methods tend to be slower,
while it is possible to quickly repair topological defects using
voxel-based methods but possibly at a cost to accuracy.

Spherical Harmonics

We propose to use spherical harmonics for the first time
to accurately correct topological defects directly on the
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(e)

Figure 2.

The full processing pipeline is illustrated using a simple shape
with a handle. The original surface mesh (a) is mapped onto a
sphere (b). The radii of points in the handle are modified so
that they are no longer on the surface of the sphere (c). A regu-
larly sampled grid (d, green) is then overlaid on top of this
sphere to create uniform sampling in the parameter space. For
each point in the regularly sampled grid (d, green), the intersect-
ing triangle in the spherical mapping (d, blue) is found, and bary-
centric coordinates within this triangle are used to interpolate a
spatial coordinate for this vertex lying on the original tessellated
surface mesh. Points with modified radii are not favored during

surface. Spherical harmonics have been recently applied to
brain surface meshes, usually in the realm of shape analy-
sis. First applied to brain imaging in 1995, as a method to
detect shape differences between closed objects [Brechbiih-
ler et al., 1995], and for representing the cortex and flows
between surfaces [Thompson and Toga, 1996], spherical
harmonic analysis has been subsequently applied to quan-
tify structural differences in subcortical structures [Gerig
et al., 2001; Gutman et al., 2006; Kelemen et al., 1999; Shen-
ton et al., 2002] and full cortical surfaces [Chung et al.,
2006; Shen and Chung, 2006].

Spherical harmonic analysis can be described as a Fou-
rier transform on a sphere that decomposes the brain sur-
face data into frequency components; the spherical
harmonics are the eigenfunctions of the Laplacian operator
on the sphere, and they are often used a basis to compute
and estimate solutions to diffusion equations or flows in
spherical coordinates, as they provide a complete ortho-
gonal sequence of functions that can approximate any
(square-integrable) smooth function defined on the sphere
(including, by analogy, the 3D spatial coordinates of a
spherically parameterized surfaces, as they can be consid-
ered as functions on the sphere). The surface can also be
reconstructed from the coefficients of the spherical har-

the search for nearest intersecting triangle. These regularly
sampled points are forward- then reverse-transformed using
spherical harmonics. High-frequency (e) and low-pass filtered (f)
reconstructed surfaces are derived from the spherical harmonic
coefficients. In the regions containing the defect, vertices from
the low-pass filtered reconstruction are patched into the high-
bandwidth reconstruction (g). Finally, a T| postcorrection step
removes any remaining artifacts from the removal of the handle
(h). [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

monics. If spherical harmonics are used to approximate a
reconstructed surface, the RMS error of the reconstructed
surface decreases as the number of coefficients increases
and can become arbitrary small (i.e., uniform approxima-
tion). Furthermore, the coefficients of the spherical har-
monics may be weighted to achieve a smoothing effect
[Chung et al., 2007].

A drawback to spherical harmonics is the computation
time required to calculate the coefficients. However, a
modification of the fast Fourier transform compatible with
spherical coordinates dramatically decreases the computa-
tion time, as it is no longer necessary to directly calculate
the coefficients [Healy et al., 1996; Kostelec et al., 2000].

In this article, we present a method to accurately correct
topological defects and artifacts using spherical harmonics.
Spherical harmonic functions retrospectively correct topo-
logical errors directly on the brain surface mesh. In brief,
we resample a spherical mapping of the cortical surface
mesh and calculate 3D spatial coordinates for each spheri-
cally sampled point based on its approximate location in
the cortical surface mesh (Fig. 2b—d). The coordinates of
location mapped on the regularly sampled sphere are for-
ward transformed and then inversely transformed via
spherical harmonics to reconstruct a cortical surface
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without topological defects (Fig. 2e,f). In a high-frequency
reconstruction, the topological defects are replaced with a
spiked surface (high sharpness), which is repaired by
replacing local patches with points from a low-pass fil-
tered reconstructed surface (Fig. 2g). The result is a more
accurately reconstructed cortical surface free from topolog-
ical defects and large geometrical artifacts (Fig. 2h).

METHODS
Sample Data Sets

Three data sets were used to evaluate the validity of this
approach: (a) an artificial structure containing topological
defects and geometrical artifacts; (b) 12 MRI scans of the
same brain, including the creation of a “gold standard” by
averaging all 12 scans and manually correcting any
remaining topology defects; and (c) scans of 10 healthy
control subjects.

The topological phantom is essentially a cube that has
three holes, two handles, and two “artifacts.” The 60-mm°®
phantom was made by simulating a 1-mm® T1 intensity
image using routines available from the Statistical Para-
metric Mapping software package (http://www fil.ion.ucl.
ac.uk/spm/software/) and in-house MatLab code and
then constructing a surface mesh with ~50 K triangles
using a marching cubes algorithm. This surface mesh is
then corrected using our method. Another simulated “gold
standard” T1-weighted image was also generated as an
input for T1 image postcorrection. By comparing to the
“gold standard” mesh surface created directly from the
“gold standard” T1 intensity image, it is possible to quan-
titatively assess the validity of the spherical harmonic
reconstruction.

The second approach was to create a “gold standard”
brain by averaging 12 scans of the same subject. The aver-
aging reduces Gaussian noise and the size and number of
the topological defects but cannot remove all topological
defects entirely. The remaining defects were extremely
small and corrected manually using FreeSurfer [Fischl
et al., 1999a]. The sample data set included 12 brain scans
of the same subject performed on two different 1.5 T Sie-
mens Vision scanners. Both scanners used 3D magnetiza-
tion-prepared gradient echo (MP-RAGE) TIl-weighted
sequences of 160 sagittal slices with voxel dimensions 1
mm x 1 mm x 1 mm and FOV = 256 mm. Scanner 1
parameters were TR/TE/FA = 11.4 ms/4.4 ms/15°, and
Scanner 2 parameters were TR/TE/FA = 15 ms/5 ms/30°.

To verify that the spherical harmonic-based correction
approach was not optimized for a single brain, a third
dataset of 10 healthy control subjects” brain scans was also
included. For the 10 control subjects (4 females/6 males,
mean age 35.3 years, £11.3 SD), T1-weighted images were
obtained on a 1.5 T Philips Gyroscan ACSII. There were
256 sagittal slices per scan (1-mm thickness, TR = 13 ms,
TE = 5 ms, flip angle = 25°, field-of-view = 256 mm) with
a matrix size of 256 x 256, resulting in an isotropic voxel

size of 1 mm®. As no “gold standard” is available for com-
parison, the correction for these brains was validated by
an expert who scored the validity of topological defect cor-
rections in brains corrected either using our method or by
FreeSurfer. The brains were randomly labeled such that
the scorer was not informed about which correction
method had been used to correct each brain.

For both datasets (12 scans of the same brain and 10
control subjects), each brain scan was processed using the
default FreeSurfer processing pipeline to produce a WM
surface representation for each hemisphere [Fischl et al.,
1999a]. The surface used as input into our topological cor-
rection method was the xh.smoothwm surface before topo-
logical correction. The spherical mapping was additionally
postprocessed using in-house tools to improve the accu-
racy of the reparameterization [Yotter et al., in-press]. All
individual surface meshes included a unique set of topo-
logical defects.

Software Implementation

The topology correction program was implemented in
the C programming language. The code related to spheri-
cal harmonics was based on a publicly available spherical
harmonic processing library [Kostelec and Rockmore,
2004], and the final correction using the T1 intensity
images used functions extracted from the BICPL software
library (McConnell Brain Imaging Centre Programming
Library, http://packages.bic.mni.mcgill.ca/). These func-
tions are described in more detail below. All other code
was developed in-house.

Cut/Fill Operations and the Initial
Spherical Mapping

A difficult problem to solve in brain surface mesh recon-
struction is how to fill holes and cut handles. We propose
a simple and fast new method compatible with the spheri-
cal harmonics approach to accomplish this.

To apply spherical harmonic analysis to the brain sur-
face mesh, a spherical mapping of the uncorrected surface
mesh must first be generated. This spherical mapping is
not homeomorphic with a sphere, because it still contains
defects. It is also beneficial to reduce area distortion in the
spherical mapping, because this improves the reparamete-
rization process, during which a coordinate of location
based on the estimated cortical surface location is gener-
ated for each regularly spaced point in spherical coordi-
nates [Yotter et al., in-press]. Additionally, this spherical
mapping may also be used to identify topological defects
by locating self-intersections in the spherical mapping
[Fischl et al., 1999a]. Points associated with topological
defects will be referred to as defect points in the following
discussion.

During the reparameterization process (detailed below),
regularly sampled spherical points are associated with a
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Figure 3.

Defects are labeled as either holes for filling or handles for cut-
ting before the surface is reparameterized. In this hole, the point
set is first bisected (a). The original spherical mapping with
the bisected points marked is shown in (b). Inner points (pre-
viously marked as green) are then modified on the spherical

cortical location by finding the closest triangle in the
spherical mapping and then using barycentric coordinates
to interpolate its location on that triangular tile. By varying
the radius of the defect points within the defects, it is pos-
sible to favor a subset of defect points, such that the outer
points for holes (or the inner points for handles) are more
likely to be chosen. These points are favored because
they are closer to the surface of the reparameterized
sphere, whereas the other points with nonunity radius
are further away than they would have been had their
radii not been modified. This affects the search for the
closest point when mapping the original set of points to
the reparameterized mesh.

First, the defects must be labeled for either cut or fill
operations. This is accomplished by examining the inten-
sity of the T1 image in the space central to the defect. If it
is above a T1 intensity threshold (set to 99% of the average
T1 threshold of nondefect points, a threshold which empir-
ically performed best for correctly labeling holes and han-
dles), then it is labeled as a hole to be filled; otherwise,
it is a handle to be cut. For large defect areas with many
topological errors (e.g., when the Euler characteristic is
less than —10), this approach is not applicable. These large
defect clusters invariably occur either at the ventricles
or in the nonbrain area around the orbitofrontal cortex (the
correction of which is shown in Fig. 11). For the ventricular
defects, they are identified using their 3D position within the
brain and marked as a hole to be filled; for the defects
around the orbitofrontal cortex, they are always cut.

Once a defect has been labeled as a target for either a
cut” or a “fill” operation, the defect points are then
bisected into two groups of points, based on how close

“

mapping to have a slightly smaller radius (c). When searching
for the closest triangle during the reparameterization process,
the outer triangles will be strongly favored. [Color figure can
be viewed in the online issue, which is available at
www.interscience.wiley.com.]

they are to the cortical centroid, along the axis of the corti-
cal defect.? For defects marked for filling, the defect points
closer to the cortical centroid are adjusted in the spherical
mapping such that their radii are slightly smaller; for cutting,
defect points farther from the cortical center have adjusted
radii that are larger. Thus, during the reparameterization pro-
cess, the closest polygon to the reparameterized point will
more likely be the outer (for filling) or inner (for cutting)
points within the defect region that contains overlapping tri-
angles in the spherical mapping, as nonfavored points have
been moved away from the surface of the reparameterized
sphere. Figure 3 demonstrates this method for a hole.

Spherical Parameterization and Generation
of Coordinates of Location

To analyze the harmonic content of a spherical surface,
the spherical surface needs to have regularly sampled
points with respect to 6 and ¢, where 0 is the colatitude
and ¢ is the azimuthal coordinate. As the original cortical
surface does not generally map to a regularly sampled
sphere, the first step in using spherical harmonics is to
reparameterize the surface.

To do this, points are generated from equally sampled
values of 6 and ¢ for all members in the sets, such that there
are 2B points per set, where B is the bandwidth. For each
R R Sampled fRhsricel, poink the Glosest PalvEoL 0
points and then normalizing. This method takes advantage of the
fact that the normals inside of the defect (as well as along the sides)
cancel out, while the outer points have no equivalently matched
points on the opposite side. Thus, the result is a directional vector
along the defect that can be used along with the cortical centroid to
correctly bisect the defect points.
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(b)
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Figure 4.

Using a Butterworth filter to filter the coefficients results in a
smoother reconstructed surface. Both a boxcar filter (a) and
a Butterworth filter (b) leave some ringing artifacts, but using a
Butterworth filter reduces the magnitude of the ringing artifacts.
The filtered reconstructions were obtained by initially calculating
coefficients for | = 1,024, then filtering such that || = 64. These

the cortical spherical mapping is found. Because of the
change in the radius of defect points, these are slightly dis-
favored when searching for the closest polygon.

Within the closest polygon, a spatial location for the
interpolated vertex in 3D is approximated using barycen-
tric coordinates. The result is a regularly sampled spheri-
cal map in which every point is associated with a
coordinate that gives its location on the original cortical
surface (Fig. 2b-d).

Harmonic Analysis

The spherical harmonic series representation of a spheri-
cal mesh can be obtained using normalized spherical har-
monics Y7'(0,$):

Y7'(6, ¢) = PJ"(cos 0)e™?, 1)
where [ and m are integers with |m| < I, and P} is the
associated Legendre polynomial function defined by:

m 1 apdtm o, !

ringing artifacts can also be reduced by using a higher order spheri-
cal harmonic approximation. The sharpness of a mesh point is the
maximum angle between the normals of nearest neighbor poly-
gons, in degrees. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

A square-integrable function f(6,$) on the sphere can be
expanded in the spherical harmonic basis such that:

Mm

!
Z Y[ 2F 0 m) x YT 3)

I

Il
o

where the coefficients f(l m) are defined by the inner prod-
uct f(l m) (£,Y7), and the L* norm of each basis function
Y} is given by:

_ An (I m)
2041 (I—-m)”

4)

Y,

This system can be solved directly by finding the bases
first, but a more efficient approach is to use a divide-and-
conquer scheme as described in [Healy et al., 1996].

Using the calculated coefficients, two surfaces are recon-
structed. The first surface is a high-frequency surface that
uses all coefficients as is (Fig. 2e). The second surface is a
low-bandwidth (smoothed) surface that is reconstructed
from filtered coefficients using a 128-order Butterworth
low-pass filter, thus excluding contributions from higher
frequency coefficients (Fig. 2f). A Butterworth filter
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Figure 5.
Some detail is lost as more coefficients are filtered. Filtering coefficients such that | = 32 or lower
result in a surface that no longer resembles the original surface. The numbers shown are the lower
value of |, and all surfaces were constructed such that | = 1,024 and then filtered with a Butterworth
filter: An artifact (red arrow) is no longer visible in the surfaces reconstructed using spherical harmonics.
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

reduces ringing artifacts and results in a smoother recon-
structed surface (see Fig. 4). To reconstruct the surfaces,
the harmonic content is processed through an inverse Fou-
rier transform to produce coordinates associated with each
spherical point. These coordinates are used to reconstruct
the cortical mesh without topological defects using an
icosahedron as the base mesh.

Patching of Reconstructed Cortical Meshes

After reconstruction via spherical harmonics, the result-
ing cortical mesh is homeomorphic to a sphere. However,
two problems need to be addressed in the reconstructed
surface. First, adjacent to regions formerly containing topo-
logical defects, the spherical harmonic-based reconstructed
surface generally replaces the defect with a spiked topol-
ogy that does not correspond to actual brain anatomy. The
spiked appearance is only present if the bandwidth is high
enough to admit higher frequencies; if a lower bandwidth
is used, the surface near former topological defects is
smooth and well reconstructed, but anatomical detail is
lost. Second, the reconstructed surface often contains self-
intersections that should be repaired; this problem is
addressed in the next section.

To correct the first problem, these surfaces are combined
such that the regions that exhibit spiked topology in the
higher frequency (I = 1,024) surface are replaced with patches
from the low-pass filtered (I, = 64) cortical reconstruction, but
only in regions previously marked as defect areas (Fig. 2g).
The lower limit was chosen such that the spiked regions were
smooth but the surface retained the approximate shape of the
original cortical surface, such that the union of the two surfa-
ces does not result in large discontinuities (see Fig. 5).

Regions with spiked topology are identified by calculat-
ing a sharpness value for each point. The sharpness is the
maximum angle between the normals of nearest neighbor
polygons. If the sharpness is above a threshold of ¢, = 60°,
and if this point is labeled as being within a region contain-
ing a topological defect, then this point and its set of nearest
neighbors are replaced with the corresponding points in the
low-pass filtered cortical surface. This angular threshold
was empirically determined to make sure that all brain
surfaces were appropriately patched; however, as the patch-
ing only occurs within regions marked as areas formerly
containing topological defects, lowering the threshold fur-
ther had little effect on the final reconstructed surface.

Correcting Self-Intersections

In all cases studied here, the reconstructed cortical sur-
face contained self-intersections, i.e., the cortical surface
intersects itself. These self-intersections generally occur in
regions formerly containing topological defects and are
found by testing for edge-triangle intersections. Self-inter-
sections are undesirable, as it would mean that the same
imaging data would be represented in at least two nonad-
jacent locations on the unfolded cortical surface. This prob-
lem should be addressed as part of the topological
correction process. There are two approaches capable of
resolving self-intersections: further patching using the low-
pass filtered surface and localized smoothing.

As the low-pass filtered reconstruction is smoother than
the high-frequency surface, it tends to contain fewer self-
intersections, as the lower frequency functions cannot eas-
ily generate a self-intersection (as an extreme case, con-
sider that low-pass filtering such that /; = 1 results in a
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Figure 6.
Self-intersections are corrected via localized smoothing. A region containing self-intersections
(a) is smoothed until the cortical surface no longer intersects itself (b). The algorithm is imple-
mented to affect as few points as possible. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

sphere). By patching self-intersection regions with the
equivalent points from the low-pass filtered surface, the
number of self-intersections can be greatly reduced, but
usually not eliminated. This is the first step taken when
repairing self-intersections.

For remaining self-intersections, the mesh is smoothed
using a localized smoothing algorithm until the region no
longer contains self-intersections [Yotter et al., in-press). Fig-
ure 6 shows a typical example of self-intersection smoothing.
The localized smoothing algorithm was implemented such that
it would not affect more than 0.1% of the total number
of surface points. For details of this algorithm, see Appendix.

T1 Image-Based Postcorrection

It could be argued that the reparameterization, patching,
and localized smoothing operations may result in a loss of
fidelity in the spherical mapping. Furthermore, there may
be some mislabeled defects that were cut/filled when the
opposite operation would have been more appropriate.
These issues can be counteracted by including a small
amount of surface postprocessing based on the intensities
of the associated Tl-weighted image (Fig. 2h). In our
implementation, all points that were modified via patching
or via self-intersection repair are later adjusted using the
original Tl-weighted intensity image and previously
approximated T1 intensity threshold using the publicly
available software package BICPL (http://packages.bic.m-
ni.mcgill.ca/). The approach uses a surface deformation
approach to correct the surface mesh based on the T1 in-
tensity image [MacDonald et al., 1994]. This correction pro-
cess uses only the T1 intensity image to reposition the
surface mesh to locations in the T1 intensity image that are
at a particular intensity threshold and tends to smooth the

surface. By limiting this operation to only previously modi-
fied points and setting the maximum number of iterations
to 40, the amount of smoothing of the surface is minimized.

Quantitative Analysis of Results

For the first two data sets (the phantom and 12 scans of the
same brain), corrected surfaces were compared to the “gold
standard” surface using the Hausdorff distance, the mean
distance error, distance error histograms (for the second set
only), and percentage of outlier reduction (defined below).
The mean distance error d. is the average minimum distance
between a set of points X and a surface S, whereas the Haus-
dorff distance is the maximum value within the minimum
distance set. The minimum distance function d(p,S) between
a point peX and the surface S can be defined as:

d(p,X) =minllp—p'Il, (5)
p'es

where p’ is a point on the surface S. The mean distance
error is then defined as follows

4= o d(p.S), ©
P pex

where N,, is the number of points in the set of points X.

The outlier reduction percent represents the fraction of
points that remain above a distance error threshold set in
the uncorrected brain surface, such that:

Ny Np
OP=(1-—--2) x100 7
( Ne ' N,) 100 )
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Figure 7.

Topological correction using spherical harmonics relies on a union
between a high-frequency (I = 1,024) and low-pass filtered (| =
64) surface. The original surface (a) contains three holes (red
arrows), two handles (yellow arrows), and two geometrical arti-
facts (blue arrows). The high-frequency reconstruction (b) replaces
topological defects with sharp spikes but retains more detail than

where Ny and N, are the number of points whose distance
errors are above threshold in the original brain surface
and the corrected surface, respectively, and N‘;, and N, are
the total numbers of mesh points in the original brain sur-
face and the corrected surface, respectively. The threshold
is set to include the top 5% points with the largest distance
errors in the uncorrected brain surface. A value of 100%
indicates that all outliers have been removed, whereas a
value of 0% indicates no improvement.

For the third dataset (10 scans of healthy control sub-
jects), each topological defect was examined by an expert
(R. D.) and given a score (+/0/— for accurate/partially
accurate/inaccurate) based on the quality of the final sur-
face. Here, a score of “0” or “partially accurate” means
that the cut (or fill) was correct, but the corrected surface
did not completely match the contours of the inner (or
outer) surface in the original mesh.

the low-pass filtered surface (c). The union of the two surfaces
(d) optimizes detail retention and topological error correction. T|
postcorrection smooths out the holes and handles (e), so that the
corrected surface closely matches the ideal surface (f). [Color fig-
ure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

RESULTS AND DISCUSSION
Topological Phantom

Although a topological phantom does not resemble a
brain surface, topological defects in such a synthetic data-
set should still be accurately repaired if the approach is
fundamentally valid. Such datasets provide a way to
assess accuracy when ground truth is known because it is
specified analytically.

As shown in Figure 7, the topology is accurately cor-
rected in a 60-mm’ cubic phantom. Before T1 postcorrec-
tion, the topological correction algorithm shows good
results filling holes and cutting handles. Furthermore,
topologically correct but “inaccurate” geometrical artifacts
are greatly reduced. The forward Hausdorff distance is
1.71 mm (due to the remaining geometrical artifacts (blue
arrows) that originally deviated by 12 mm from the ideal
surface), and the forward mean distance error is 4.7 pm.
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TABLE |. Topological correction using spherical harmonics reduces the mean distance error and the proportion
of the top 5% outliers in comparison with the averaged “gold standard” brain surface

Mean distance error (mm)

Hausdorff distance (mm)

Outlier reduction Total

Correction Forward Reverse Forward Reverse (top 5%) self-intersections
None 0.749 (+0.007) 0.509 (+0.008) 10.949 (£0.022) 4.332 (+£0.032) — 13
FreeSurfer 0.641 (+0.007) 0.563 (+0.007) 7.910 (£0.056) 5.270 (+0.041) 65.4% 21
SPH 0.537 (+0.007) 0.539 (+0.008) 6.855 (+0.044) 5.922 (+0.034) 85.1% 3

Generally, the forward Hausdorff distance and mean distance error metrics measure how well the reconstructed surface matches the
“gold standard” mesh; the reverse Hausdorff distance and mean distance error indicate how much information in the “gold standard”

mesh was retained in the reconstruction.

After T1 postcorrection, there are still some rounded
edges in the phantom that deviate from the target surface.
These highlight a key feature of the spherical harmonics
approach, in that sharp edges are not preserved. As sharp
edges do not exist in the folded surface of the brain, this
might be considered to be an advantage of this approach,
because it would correct these edges that must be due to
noise. For surfaces with sharp edges, however, it would be
important to choose a T1 postcorrection algorithm that
does not contain a curvature limitation, as does the soft-
ware package that we chose to use.

Twelve Scans of the Same Brain

The corrected surfaces were all homeomorphic to a
sphere, verified by calculating the Euler characteristic.
Quantitatively, our spherical harmonic method generated
a corrected surface that has a lower distance error, an
improved distance error histogram, and fewer outliers
compared with the uncorrected surface, when both surfaces
are compared with the ideal surface (Table I and Fig. 8). The
corrected surfaces also contained fewer self-intersections.

Visual inspection reveals that most corrections were
closer to the “gold standard” averaged brain surface com-
pared with the original uncorrected surface. Typical cor-
rections are shown in Figure 9. By mapping the distance
error across the surface of a single brain, the distance error
located in nondefect regions closely matched the distance
error in the uncorrected surface (see Fig. 10). In previously
published algorithms, large defects were sometimes prob-
lematic for the correction processes. However, our
approach accurately corrects large defects. Figure 11 shows
typical corrections in the ventricular region and the non-
brain area around the orbitofrontal cortex.

Because the averaged “gold standard” brain may be
smoothed during the averaging process, it could be argued
that the smoothing due to spherical harmonics is the pri-
mary cause of the reduced distance error metrics. How-
ever, by measuring the distance error from the original
uncorrected surface, it is clear that the spherical harmonics
reconstruction is highly representative of the original uncor-
rected surface, despite the fact that the surface has been
reparameterized (Table II). This is further shown by the
low mean distance errors. As expected, the reverse Haus-

dorff distance is large because of the removal of large
defects and artifacts. Changes in these areas are also
responsible for an increase in the reverse mean distance error.

The full topology correction process using spherical har-
monics (including identification of defects, smoothing,
patching, and so on) requires ~6-8 min on a 2.4-GHz
iMac for a mesh that contains 150,000 vertices. This
excludes the initial spherical mapping generation and T1
postcorrection; the latter step requires ~8 min of addi-
tional processing time. The resulting mesh contains
approximately the same number of vertices. As a basis of
comparison, the topology correction process in the stand-
ard FreeSurfer pipeline takes approximately an hour; how-
ever, as no source code is available, it is unknown
whether other operations besides topological correction are
performed during this processing step.

---B - Uncorrected
—&6—SPH

# of Points

0.5

D L i 1 1 1 1 L 1 3
0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2

Distance Error (mm)

Figure 8.

The forward distance error histogram is improved for surfaces
corrected using the spherical harmonic method. The histograms
are an average compiled for 24 hemispheres. Compared with the
uncorrected surfaces, there are more points with low or zero
distance error for the spherical harmonic corrected surfaces.
[Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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Figure 9.
A typical correction of topological defects by spherical harmonics is shown. Holes (a) are
filled (b), and handles (c) are cut (d). [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Distance
1.50 2.25

.

Figure 10.
Away from topological defects, surface information remains unchanged. The uncorrected surfaces
(a and b) are almost identical to the spherical harmonics corrected surfaces (c and d), except in
regions near topological defects. The distance in mm is the error between these surfaces and

the “gold standard” averaged surface. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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Figure 11.
Large defect regions in the ventricular region are filled, whereas large defects in the nonbrain
area around the orbitofrontal cortex are cut. (a) In the original uncorrected surface, the ventric-
ular defect is marked in red and the defect around the orbitofrontal cortex is marked in yellow.
(b) Spherical harmonics correction fills the ventricular defect and cuts the defect around the
orbitofrontal cortex. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Ten Scans of Healthy Controls

Ten additional brain surfaces were processed, and each
defect correction was rated by an expert. The expert was
provided with two corrections per hemisphere that had
been randomly grouped with the goal of obtaining an
unbiased correction score; however, when questioned
afterward, it was clear to the expert which brain surface
was corrected using which method, due primarily to the
corrections performed for the ventricular areas. Spherical
harmonic correction accurately repaired topological defects
in 93% of the cases (score of + or 0), of which 9% were
only partially correct. For the remaining 7% (score of —),

the errors arose from incorrect labeling for fill/cut opera-
tions or incorrect bisecting of the defect points due to an
unusual geometry of the defect. As a point of comparison,
the standard FreeSurfer pipeline accurately repaired 94%
of the defects, of which 3% were only partially correct.

CONCLUSION

Topology correction using spherical harmonics success-
fully removes topology defects and reduces geometrical
artifacts. The approach is also valid for large defects that
contain multiple holes and handles (Euler characteristic

TABLE Il. The mean distance errors for surfaces corrected using topological correction are small when
compared with the original uncorrected surface

Mean distance error (mm)

Hausdorff distance (mm)

Correction Forward Reverse Forward Reverse
FreeSurfer 0.227 (+0.006) 0.408 (+0.005) 4.186 (+0.037) 10.592 (£0.075)
SPH 0.011 (£0.000) 0.309 (+0.002) 3.031 (+0.018) 11.025 (£0.037)

However, the reverse Hausdorff distance is large because of the removal of defects.
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less than —10). It accurately corrects most of the topologi-
cal defects, and considering that this is a new approach, it
is expected that, with future refinements, the correction
accuracy may increase in the future.

One source of error is in misclassification of holes and
handles, resulting in holes being cut and handles being filled.
The approach presented here relies on the Tl-weighted
image intensity in the center of the defect to differentiate
between the two cases. A more complicated algorithm that
takes into account the location of the defect on the surface
of the brain, the T1-weighted intensity image surrounding
the defect, and even curvature values may improve classi-
fication accuracy. One important tradeoff is the computa-
tion time required for a more complicated approach,
which may offer limited improvement in accuracy.

Another source of improvement would be in the T1-
based postcorrection process. In this implementation, we
chose to use a publicly available software package that
does not account for the method with which the surfaces
were originally corrected. A global T1 postcorrection algo-
rithm that is compatible with spherical harmonics (for
example, by making assumptions about the initial smooth-
ness of the reconstructed surface or by examining the orig-
inal uncorrected surface) could increase the accuracy of
this correction step without a noticeable sacrifice in com-
putation speed. Furthermore, the T1-based postcorrection
was only applied to the topological defects; it is expected
that a Tl-based postcorrection applied globally to the
entire surface would further increase the accuracy of the
reconstructed surface.

The topological errors (especially the large defect in the
area around the orbitofrontal cortex) arose initially from
incorrect segmentation of tissue types. The accuracy of
tissue segmentation could be improved by using tissue
registration [Ashburner and Friston, 2005]. However,
depending on the surface construction algorithm, the
improved segmentation accuracy may not help to reduce
the size and number of handles across gyri, because the
spaces between gyri would still be relatively narrow.

In conclusion, we found that topological correction
using spherical harmonics offers a fast, accurate method to
correct topological defects in cortical surfaces used in brain
mapping. We verified this both qualitatively and quantita-
tively. As the approach is fairly straightforward, it lends
itself to inclusion in a full processing pipeline for surface
data. The topology of surfaces generated using this
method are more accurate than the original uncorrected
surface, are homeomorphic with a sphere, and are suitable
for intersubject analysis.
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APPENDIX: AREA SMOOTHING ALGORITHM

Self-intersections are resolved by smoothing the mesh
locally. First, the self-intersection region is labeled. Edge points
are then “anchored” such that the points within the edge
points are the only ones that are smoothed. Given an inner
point p, each triangle adjacent to the point is assigned a weight
that is used to adjust the position of the point. The center of
each triangle ¢; containing point p is found using the formula:

cv:($p+$r+l‘s yp+yr+ys Zp+zr+zs) (8)
! 3 ’ 3 3 ’
where r and s are the other two points in the triangle. The
weight w; of triangle ¢ is set such that:
a;

A, (C)]

w; =

where A, is the total area of all triangles containing point
p. The position of point p can then be updated as follows:
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