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Structural brain abnormalities are central to schizophrenia 
(SZ), but it remains unknown whether they are linked to 
dysmaturational processes crossing diagnostic boundaries, 
aggravating across disease stages, and driving the neurodi-
agnostic signature of the illness. Therefore, we investigated 
whether patients with SZ (N = 141), major depression 
(MD; N = 104), borderline personality disorder (BPD;  
N = 57), and individuals in at-risk mental states for psycho-
sis (ARMS; N = 89) deviated from the trajectory of normal 
brain maturation. This deviation was measured as differ-
ence between chronological and the neuroanatomical age 
(brain age gap estimation [BrainAGE]). Neuroanatomical 
age was determined by a machine learning system trained 
to individually estimate age from the structural magnetic 
resonance imagings of 800 healthy controls. Group-level 
analyses showed that BrainAGE was highest in SZ (+5.5 y)  
group, followed by MD (+4.0), BPD (+3.1), and the 
ARMS (+1.7) groups. Earlier disease onset in MD and 
BPD groups correlated with more pronounced BrainAGE, 
reaching effect sizes of the SZ group. Second, BrainAGE 
increased across at-risk, recent onset, and recurrent states 
of SZ. Finally, BrainAGE predicted both patient status as 
well as negative and disorganized symptoms. These find-
ings suggest that an individually quantifiable “accelerated 
aging” effect may particularly impact on the neuroanatom-
ical signature of SZ but may extend also to other mental 
disorders.

Key words:  neuroanatomical dysmaturation/ 
biomarker/machine learning/accelerated aging/schizophr
enia/depression/borderline personality disorder

Introduction

From adolescence to adulthood, the brain’s neural 
architecture is profoundly remodeled, involving syn-
aptic elimination, dendritic pruning, and myelina-
tion.1 At the macroscopic level, significant gray matter 
(GM) reductions within the prefronto-temporo-lim-
bic cortices may reflect this maturational process, 
which shapes the substrate of  complex and integrated 
behavior in adult life. Importantly, these age-related 
changes seem to be so well conserved across individu-
als that they constitute a tightly controlled interme-
diate phenotype of  normal brain maturation,2 which 
enables the single-subject quantification of  abnormal 
age-related neurodevelopment by using magnetic reso-
nance imaging (MRI)-based multivariate pattern anal-
ysis (MVPA).2–4

Intriguingly, the transition from adolescence to 
adulthood does not only host the normal maturation 
of  neural circuitry, but it is also associated with the 
highest incidence rates of  psychoses. These observa-
tions inspired the “two-hit” hypothesis of  schizophre-
nia (SZ),5 postulating that a “late” neurodevelopmental 
process is disturbed in this vulnerable phase due to an 
early neurobiological “hit” in the pre- and perinatal 
period. This theory assumes that higher order corti-
cal systems involving prefrontal, temporal, and limbic 
structures are susceptible to deviations from their mat-
urational trajectories.1,6,7 These deviations may lead to 
brain alterations that accumulate across subsequent 
disease stages8,9 and, thus, may point to a process of 
“accelerated aging” in SZ.10,11
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This hypothesis requires thorough evaluation by con-
trasting disease-specific findings with changes in the 
normally maturing brain.12 Furthermore, because con-
siderable neuroanatomical overlaps have been found 
between nonaffective and affective psychoses,13 it remains 
unclear if  maturational processes may only be altered 
in SZ or across nosological boundaries. Finally, previ-
ous MRI studies revealed high diagnostic classification 
rates (70%–90%) of patients with schizophrenic or affec-
tive psychoses vs healthy controls (HCs).14 It is unknown 
whether the diagnostic signatures underlying these results 
emerge from an altered neurodevelopment in SZ and 
beyond. This question is of crucial relevance for future 
imaging-based diagnostic tools in psychiatry because 
disease-specific deviations from the normal maturational 
trajectories may evolve dynamically, thus determining the 
diagnostic performance of MRI-based biomarkers across 
the life span.15

To investigate these questions, we first constructed 
a multivariate model of  neuroanatomical brain matu-
ration enabling the single-subject estimation of  age in 
a large MRI database of  HCs. Then, this age predic-
tor was applied to a transnosological database of  dif-
ferent diagnostic groups that include patients with SZ, 
major depression (MD), borderline personality disorder 
(BPD), and individuals in at-risk mental states (ARMS) 
for psychosis in order to quantify their deviations from 
the normal maturational trajectory using brain age gap 
estimation (BrainAGE).4 Furthermore, BrainAGE was 
used to compare disease stages of  SZ, consisting of 
early and late ARMS (ARMS-E and ARMS-L, respec-
tively), recent-onset (RO), and recurrently ill (RE) SZ 
patients. Moreover, we assessed whether BrainAGE 
determined a separately trained MVPA classifier’s abil-
ity to individually separate SZ, MD, and BPD patients 
from HCs. Finally, we examined the impact of  sociode-
mographic and clinical variables on BrainAGE varia-
tion in SZ patients and HCs. We expected to find (1) 
BrainAGE increments predominantly in SZ group 
compared with MD and BPD groups, in line with the 
“accelerated aging” hypothesis of  SZ,10,11 and (2) an 
increasing BrainAGE gradient from ARMS through 
RE-SZ individuals. We hypothesized that BrainAGE 
predicts the single-subject separability of  SZ, MD, and 
BPD patients vs HCs due to a considerable overlap of 
age- and disease-related brain variation.

Methods

Study Participants

A structural MRI database of 800 HCs, aged 18–65 and 
recruited across 5 centers, was created in order to train 
the multivariate age predictor (definitions are given in 
table 1). Patients were enrolled at the Department of 
Psychiatry and Psychotherapy, Ludwig-Maximilian 
University, Munich (tables 1 and 3). Patient evaluations 

included the Structured Clinical Interview for Diagnostic 
and Statistical Manual of Mental Disorders, Fourth 
Edition (DSM-IV): Axis I and II Disorders, the review 
of records and psychotropic medications (table 3) as well 
as symptom assessments using the Positive and Negative 
Symptom Scale (PANSS)21 in SZ and BPD groups, the 
Scale for the Assessment of Negative Symptoms22 in SZ 
group, and the Hamilton Depression Rating Scale23 in 
MD and BPD groups. A consensus diagnosis was achieved 
by two experienced psychiatrists at study inclusion and 
after 1 year using the DSM-IV. Doses of antipsychotic 
medications at MRI were converted to chlorpromazine 
equivalents.24 

Additionally, a sample of  89 ARMS individuals 
was generated by pooling the Munich (N = 52) and 
Früherkennung von Psychosen (FePsy)25 (N = 37) 
databases. In both databases, an ARMS-L for psycho-
sis was defined by established operationalized ultra-
high-risk criteria (table 1). The Munich sample also 
included individuals with ARMS-E (table 1). Seventy-
two ARMS individuals were regularly followed over 
4–7 years to detect a disease transition, as defined by 
psychotic symptoms occurring daily and persisting 
for more than 1 week.19 Transition to SZ (N = 29) or 
schizoaffective psychosis (N = 4) occurred in 33 indi-
viduals. Diagnoses were confirmed by DSM-IV criteria 
1 year after transition. Only 4 ARMS subjects received 
atypical antipsychotics (3 olanzapine and 1 risperi-
done) for less than 3 weeks prior to MRI scanning. 
Symptom severity was measured using the PANSS in 
the Munich sample and Brief  Psychiatric Rating Scale 
in the FePsy sample.

SZ patients with an illness duration of <1  year, no 
previous inpatient treatment, and <12 months (lifetime) 
of antipsychotic treatment were assigned to the RO-SZ 
subgroup or to the RE-SZ sample if  not fulfilling these 
criteria. Illness duration was the time interval between 
MRI scanning and disease onset defined retrospectively 
by the onset of symptoms paralleled by a general decline 
in social and role functioning.26 All participants gave 
their written informed consent prior to study inclusion. 
The study design was approved by the local ethics com-
mittee and was prepared in accordance with the ethical 
standards of the Declaration of Helsinki.

MRI Data Acquisition and Preprocessing

All MR images were processed using the VBM8 tool-
box27 and SPM8 software, which generated GM maps 
in the original MRI space of  each participant (table 2; 
online supplementary methods 1).28 Then, a dual regis-
tration strategy captured both large-scale and focal neu-
roanatomical variation in the study population: f﻿irst, the 
GM maps were affinely registered to the single-subject 
Montreal Neurological Institute template, thus remov-
ing global brain volume differences across subjects 

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbt142/-/DC1


Page 3 of 14

Accelerated Brain Aging in Schizophrenia and Beyond

Table 1.  Exclusion/Inclusion Criteria for Each Study Group in the Multicenter Database

Center N Mean Age (SD) Exclusion Criteria

(A) 800 HCs used for training and cross-validation of the multivariate age predictor
Munich database: Department 
of Psychiatry and Psychotherapy, 
Ludwig-Maximilian University, 
Munich

288 36.8 (11.1) (1) Age <18 or >65, (2) positive 
medical history for head trauma 
with loss of consciousness, (3) 
cortisol treatments, (4) any 
somatic conditions affecting 
the central nervous system, (5) 
present or past abuse of alcohol 
or other drugs, and (6) a personal 
or familial history of psychiatric 
disorders (first-degree relatives)

IXI database: (1) Age <18 or >65, (2) acute 
somatic, and/or (3) current psy-
chiatric conditionsa

(1) Hammersmith Hospital, 
Imperial College, London

99 39.8 (15.5)

(2) Institute of Psychiatry, King’s 
College, London

60 39.1 (13.7)

(3) Guy’s Hospital, NHS 
Foundation Trust, London

137 38.5 (12.1)

  OASIS database: Washington 
University

216 38.9 (18.0) (1) Age <18 or >65, (2) present 
or past psychiatric or neurologi-
cal diagnosis, (3) present or past 
medical conditions (eg, stroke, 
serious head injury) affecting the 
central nervous system, (4) history 
of psychoactive drug use, and (5) 
gross MRI abnormalities16

Center N Mean Age (SD) Inclusion/Exclusion Criteria
(B) Data used for validation and 
patient evaluation
Munich database: groups with 
127 HCs, 141 SZ, 104 MD, 57 
BPD, and 52 ARMS

481 HC: 24.9 (3.7) (1) Inclusion criteria:
ARMS: 24.9 (5.5) Patient groups: respective 

DSM-IV diagnostic criteria
Other groups: see table 2 ARMS-E: predictive basic symp-

toms17 and/or risk-conferring 
global functioning and trait 
criteria18

 ARMS-L: attenuated psychotic 
symptoms and/or brief  limited 
intermittent psychotic symptoms 
that closely correspond to the 
ultrahigh-risk definitions of the 
PACE clinic in Melbourne19

(2) Exclusion criteria:
General: current or past psychi-
atric comorbidities, including (1) 
mental retardation, (2) anorexia 
nervosa, (3) delirium, (4) demen-
tia or (5) amnestic disorders, and 
(6) substance dependence and/or 
somatic conditions affecting the 
central nervous system
HC: see Munich database defini-
tions in (A)
SZ: mood and personality 
disorders
MD: SZ spectrum and personal-
ity disorders
BPD: bipolar and SZ spectrum 
disorders
ARMS: current or past diagno-
ses of SZ spectrum, bipolar and 
personality disorders or psychosis 
transition criteria19
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while retaining large-scale, interindividual morphomet-
ric variation. Second, these maps were high dimension-
ally registered to the template using the DRAMMS 
algorithm,29 which encoded focal, nonlinear tissue 
deformations in each individual brain relative to the 
template. The resulting deformations and warped tis-
sue maps were used to compute GM maps allowing for 
a Regional Analysis of  brain Volumes in Normalized 
Space (GM-RAVENS).30

Support Vector Regression for MRI-Based Age 
Prediction

Across diverse biomedical fields, support vector machines 
(SVM) demonstrated their ability to learn multivariate 
prediction rules that generalize well across study popula-
tions, thus enabling individualized diagnostic classifica-
tion and function approximation (online supplementary 

methods 2).31 We used linear ν-support vector regression 
(ν-SVR)32 to predict age from each subject’s MRI by con-
structing predictive models from one set of subjects (the 
training sample) and applying them to a different set of 
subjects (the test sample), using cross-validation (CV).33,34 
This produced a completely unbiased estimate of the 
method’s age prediction performance in new individuals, 
rather than merely fitting the current study population. 
More specifically, our prediction pipeline was wrapped 
into a repeated nested CV framework consisting of 10 
repetitions × 10 ms folds at the outer and inner CV cycles, 
as detailed previously.33,34 Each training sample at the 
inner CV loop was processed as follows: f﻿﻿﻿﻿irst, the multi-
variate RGS (Regression, Gradient guided Feature selec-
tion) algorithm35,36 ranked voxels in the GM-RAVENS 
and affine maps according to their age prediction rel-
evance. Each GM input space was scaled using the 
respective weight vectors and projected to 400 predictive 

Table 2.  MRI Scanners and Data Acquisition Protocols Used in the Study

Center MRI Scanner MRI Acquisition Parameters

Munich database Siemens MAGNETOM Vision 1.5T TR: 11.6 ms; TE: 4.9 ms; 126 contiguous slices of 
1.5-mm thickness; matrix: 512 × 512; voxel size: 
0.45 × 0.45 × 1.5 mm; field of view: 230 mm

IXI database, Hammersmith Hospital Philips Intera 3.0T TR: 9.6 ms; TE: 4.6 ms; phase encoding steps: 208; 
echo train length: 208; reconstruction diameter: 
240 mm; matrix: 208 × 208; flip angle: 8°

IXI database, Institute of Psychiatry Philips Gyroscan Intera 1.5T NA
IXI database, Guy’s Hospital General Electric 1.5T TR: 9.8 ms; TE: 4.6 ms; phase encoding steps: 192; 

echo train length: 0; reconstruction diameter:  
240 mm; flip angle: 8°

OASIS database Siemens MAGNETOM Vision 1.5T TR: 9.7 ms; TE: 4.0 ms; 128 contiguous slices of 
1.25-mm thickness; matrix: 256 × 256; voxel size: 
1.0 × 1.0 × 1.25 mm; flip angle: 8°

Basel FePsy study Siemens MAGNETOM Vision 1.5T TR: 9.7 ms; TE: 4 ms; 176 contiguous slices of 
1-mm thickness; matrix: 200 × 256; voxel size: 
1.28 × 1 × 1 mm; field of view: 25.6 × 25.6 cm; flip 
angle: 12°

Note: NA, not available; TE, time-to-echo; TR, relaxation time. Abbreviations are explained in the first footnote to table 1.

Center N Mean Age (SD) Exclusion Criteria

Basel FePsy study: groups with 
22 HCs and 37 ARMS

59 HC: 23 (4.3) HC: see HC exclusion criteria in 
Borgwardt et al20

ARMS: 24.8 (6.3) ARMS: criteria that closely 
correspond to the PACE criteria 
and to the definitions applied in 
the Munich database (ARMS-L 
inclusion criteria as well as gen-
eral and ARMS-specific exclusion 
criteria)20

Note: ARMS-E, early at-risk mental states; ARMS-L, late at-risk mental states; BPD, borderline disorder; DSM-IV, Diagnostic and 
Statistical Manual of Mental Disorders, Fourth Edition; FePsy, Früherkennung von Psychosen; HC, healthy control; IXI, Information 
eXtraction from Images; MD, major depression; MRI, magnetic resonance imaging; NHS, National Health Service; OASIS, Open 
Access of Imaging Studies; PACE, Personal Assessment and Crisis Evaluation; SZ, schizophrenia.
aPersonal communication by Prof. D. Rueckert, Imperial College London.

Table 1.  (Continued)

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbt142/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbt142/-/DC1
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eigenvariates4 using principal component analysis 
(PCA).18 Finally, the ν-SVR generated a linear kernel 
projection from the training cases’ eigenvariate loadings 
and determined an optimal age-fitting function in kernel 
space. Fitting was controlled by the ν-SVR’s parameters, 
which were optimized in the inner CV cycle.

Each test person’s age was estimated by applying 
the trained prediction system (RGS, PCA, and ν-SVR 
models) to the respective test data. Age estimations 
were averaged across those models, for which the test 
person had not been involved in the training pro-
cess. This out-of-training prediction performance was 
quantified using the mean absolute error (MAE) and 
explained variance (R2). Individual errors were mea-
sured using BrainAGE.4 Finally, the trained predictor 
was applied to the 302 patients (SZ, MD, and BPD) and 
the 89 ARMS individuals to obtain BrainAGE scores. 
Additionally, we evaluated whether an age prediction 
system trained only in the Munich HC database would 
considerably change the results of  our analyses (online 
supplementary analysis 3).

BrainAGE analyses

Sociodemographic, clinical, and BrainAGE group-level 
differences were assessed across HC1, SZ, MD, BPD, 
and ARMS samples (analysis 1) and HC2, ARMS-E, 
ARMS-L, RO-SZ, and RE-SZ groups (analysis 2) (table 
3; figure  1). Continuous variables were evaluated using 
ANOVAs, and categorical variables were evaluated using 
χ2 tests. Significance was defined at P <.05.

For the patient groups in analysis 1, we further assessed 
main BrainAGE effects of diagnosis, age of disease onset, 
and illness duration as well as the predictor × group inter-
actions using ANCOVA. In analysis 2, we additionally 
evaluated main BrainAGE and interaction effects of dis-
ease stage (RO-SZ vs RE-SZ), age of onset, and symptom 
severity (PANSS total). Furthermore, effects of sociode-
mographic and clinical variables on BrainAGE were 
explored in the ARMS, patient (table 4), and HC groups 
(online supplementary analysis 1). Finally, we assessed 
whether a multivariate set of 62 clinical variables allowed 
for the single-subject prediction of BrainAGE in 125 SZ 
patients using ν-SVR regression (online supplementary 
analysis 2).

Single-Subject Patient Separability and Individual 
BrainAGE Scores

To evaluate the influence of BrainAGE on MRI-based 
patient classification, we trained a ν-SVM classifier (ν-
SVC) to distinguish between 302 patients (SZ, MD, 
and BPD) and 302 age- and sex-matched HCs from 
the Munich database. As previously described, we 
entered both GM-RAVENS and affine GM maps into 
a 3-step machine learning pipeline, consisting of mul-
tivariate voxel weighting, PCA, and ν-SVC. Again, all V
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computations were wrapped into repeated, nested CV, as 
described above.20,33,34 The SVM’s ν hyperparameter was 
a priori set to 0.5.

The trained classifier was applied to the test cases 
resulting in group predictions and decision values mea-
suring the distance between the respective subject and the 
SVM’s decision boundary. The out-of-training classifier 
performance was quantified as accuracy and area under 
the curve (AUC) (figure 2). Correlations between patient 
separability (decision values) and BrainAGE as well as 
overlaps between patient- and age-predictive patterns 
were shown in figure 2.

Results

Sociodemographic and Clinical Parameters

The HC1, patient (SZ, MD, and BPD), and ARMS 
groups differed regarding age, sex, education, and nico-
tine consumption (table 3). Illness onsets and durations 
varied significantly between patient groups: BPD group 
started earliest and showed longer duration compared 
with SZ (P < .001) and MD (P = .006) groups. The MD 
group was characterized by the latest onset: mean (SD): 
36.5 (12.0) years, whereas SZ commenced at mean (SD): 
24.2 (6.2) years. As expected, antipsychotic medication at 
MRI was more prevalent in SZ (90%) vs MD, BPD, and 
ARMS groups, whereas antidepressants were more prev-
alent in MD (73.1%) vs the other groups (table 3). Mood 
stabilizer prescription was low, with BPD group showing 
the highest prescription rate (21.6%; table 3).

HC2, ARMS-E, ARMS-L, RO-SZ, and RE-SZ groups 
differed regarding age, schooling years, body mass index, 
and nicotine consumption (table 3). PANSS total score 
was significantly higher in RE-SZ vs ARMS-E and 
ARMS-L (P < .001) groups, with the PANSS negative 
subscore in RE-SZ exceeding all other samples (table 3). 

RE-SZ patients were more frequently treated with anti-
psychotics in general, atypical antipsychotics, and anti-
depressants compared with RO-SZ patients.

Individualized Age Prediction in HCs

The ν-SVR predictor estimated age with a MAE of 
4.6 years (R2 = .83; T = 62.7; P < .001) in single out-of-
training HCs (figure 3). Age-predictive brain regions are 
shown in figure 4.

BrainAGE Across Diagnoses

BrainAGE differed across groups (figure  1; F = 29.2;  
P < .001), with the SZ group showing the most pro-
nounced BrainAGE increase vs HCs (mean [SD]: +5.5 
[6.0] y), followed by MD (+4.0 [6.2]), BPD (+3.1 [6.8]), 
and ARMS (+1.7 [7.2]) groups. Between-group differ-
ences were found in SZ vs BPD (P < .007) group, SZ vs 
ARMS (P < .001) group, and MD vs ARMS (P < .005) 
group.

Furthermore, we detected an independent main 
BrainAGE effect of age of disease onset (F = 11.2; P < 
.001) across diagnoses but detected no effects of diag-
nosis, illness duration, or diagnosis × clinical predictor 
interactions. Post hoc regression analyses showed that 
MD (r = −.34, T = −3.23; P < .002) and BPD groups 
(r = −.42, T = −2.58; P < .014), but not the SZ group 
(r = −.07, T = −0.79; P < .432), were driving age of 
onset effects based on negative BrainAGE correlations. 
We further explored these effects by median-splitting 
samples and defining “early vs late onset” as factor in an 
additional ANCOVA. Again, main effects of this factor 
survived after controlling for diagnosis and illness dura-
tion (BrainAGE marginal means [SD] in early- vs late-
onset patients: +5.9 [0.7] vs +3.1 [0.6]; F = 10.1; P = .002).  
No independent main effect of diagnosis was found (SZ =  

Fig. 1.  Group-level brain age gap estimation (BrainAGE) analyses. Box plots of BrainAGE distributions across study groups in analyses 
1 and 2 and respective pairwise post hoc comparisons.
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+5.5 [0.5], MD = +4.1 [0.6], BPD = +4.0 [1.1]; F = 2.0; 
P < .137). Effects were driven by early-onset MD (+6.7 
[0.9]) and BPD (+6.9 [1.6]), which differed from the late-
onset groups (MD: +2.8 [0.9], BPD: +1.8 [1.3]).

BrainAGE Across Stages of SZ

BrainAGE also varied across HC2, ARMS-E, ARMS-L, 
RO-SZ, and RE-SZ (F = 15.7; P < .001) groups, with 
increases in RE-SZ (+6.4 [5.6] y; P < .001), RO-SZ (+4.2 
[6.4]; P < .001), and ARMS-L individuals (+2.7 [6.9]; P 
< .005) vs HCs (figure 1). Significant post hoc differences 
were found in the groups (1) RE-SZ vs RO-SZ (P < .034); 
ARMS-L (P < .001); and ARMS-E (P < .001), (2) RO-SZ 
vs ARMS-E (P < .001), and (3) ARMS-L vs ARMS-E (P 
< .005). A  linear BrainAGE increase was detected from 
ARMS-E to RE-SZ (R2 = .33; T = 5.3; P < .001), with 
the ARMS-E group showing negative BrainAGE effects. 
No main or interaction BrainAGE effects of disease stage 
(RO-SZ vs RE-SZ) and age of onset were found after con-
trolling for PANSS total. However, the main BrainAGE 
effect of PANSS total survived after controlling for dis-
ease stage and age of onset (F = 4.4; P = .038).

BrainAGE Associations With Sociodemographic and 
Clinical Parameters

We did not observe any significant BrainAGE associations 
of psychotropic medications, nicotine, and alcohol in the 
patient (SZ, MD, and BPD) and ARMS groups (table 4) 
and no associations of sociodemographic parameters, 
nicotine/alcohol consumption, and different somatic condi-
tions on BrainAGE in HCs (table 4; online supplementary 
analysis 1). A  set of primarily negative and disorganized 
symptoms predicted BrainAGE in SZ subjects with R2 = 
.26 (T = 6.5; P < .001; online supplementary analysis 2).

Associations Between BrainAGE and the SVM 
Classification of Patient Status

A cross-validated classification accuracy of 73.7% (AUC = 
0.78) was observed in the SVM classification of 302 patients 
(SZ, MD, and BPD) vs 302 HCs (figure 2). Using BrainAGE 
as classifier in the same population, an accuracy of 65.7% 
(AUC = 0.71) was found at a cutoff value of +1.4 years. 
Classification accuracy for SZ patients vs HCs was higher 
both for the SVM (AUC = 0.81) and BrainAGE classifi-
ers (AUC = 0.75). Average SVM decision and BrainAGE 
scores were highly correlated (R2 = .53; T = 26.1; P < .001; 
figure 2). This correlation was due to a considerable overlap 
of age-predictive SVR patterns and brain regions involved 
in the SVM classification (figure 2).

Discussion

Studies recently employed MVPA methods to estimate 
age from structural MRI in large HC populations and A
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reported very accurate prediction results across all ages 
and centers, with a minimum MAE of 1.1 years in chil-
dren and adolescents.2–4 Thus, age-related neuroana-
tomical variation seems to constitute a well-regulated 
intermediate phenotype of normal brain development 

enabling individualized age inference. To our knowledge, 
our study is the first to demonstrate that this phenotype is 
commonly aberrant across major psychiatric diseases and 
the prodromal state of psychosis, suggesting “accelerated 
aging” effects already in early schizophrenic psychosis, 

Fig. 2.  Associations between support vector machines (SVM)-based age estimation and patient classification. Upper left: receiver 
operating characteristic analysis of (1) the SVM decision values of 302 patients (PAT) vs 302 healthy controls (HCs) (blue line) and (2) the 
respective brain age gap estimation (BrainAGE) scores (red line). Upper right: regression analysis of BrainAGE scores vs SVM decision 
values in the same population. Lower panel: qualitative characterization of the neuroanatomical overlap (yellow) between the SVM 
weight vectors of the age prediction system (red) and the patient classifier (green). In the gray matter (GM)-Regional Analysis of brain 
Volumes in Normalized Space condition (left), this overlap involved perisylvian, orbitofrontal, medial prefrontal, medial parietal cortices, 
and subcortical structures. In the affine GM condition, the extended overlap of age- and patient-predictive regions covered perisylvian, 
temporal, occipital, parietal, lateral and medial prefrontal, orbitofrontal and medial parietal, thalamic, and cerebellar regions.
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as well as in established MD and BPD. Moreover, these 
transnosological effects were more pronounced in early- 
vs late-onset MD and BPD, thus rendering these sub-
groups indistinguishable from schizophrenic patients. 
This aligns with the clinical observation of an earlier 
occurrence of both illnesses being associated with a more 
debilitating disease course, such as a higher incidence of 
suicidal attempts, prolonged duration of disease episodes 
as well as higher levels of psychiatric comorbidity.37–39 
Furthermore, our finding of increased BrainAGE in 
early-onset MD and BPD supports the hypothesis that 
the disruption of normal brain maturation during spe-
cific and critical time windows in adolescence and early 
adulthood constitutes a neurobiological predisposition 
for the development of psychopathological abnormalities 
across the affective and psychotic disease spectrums.1,7

Prospective MRI studies of normally developing indi-
viduals demonstrated a spatially and temporally asyn-
chronous pattern of neuroanatomical brain maturation 
shifting from sensorimotor brain regions to higher order 
association cortices.12,40 This process has been interpreted 
as a sequence of excitatory synaptic overelaboration 
followed by a reduction of excitatory and increase of 
inhibitory synaptic density.1 This synaptic maturation is 
paralleled by ongoing white matter myelination, thus lead-
ing to a profound remodeling of neural networks, which 
optimizes neural connectivity through the exact temporal 

coding of neural activity.41 In this regard, recent neuro-
imaging studies of adolescent and adult schizophrenic 
patients suggested that the spatial pattern and intensity 
of neuroanatomical alterations in SZ may critically inter-
act with the trajectory of maturational processes occur-
ring in the normally developing brain: childhood-onset 
patients showed more pronounced neuroanatomical 
abnormalities in the sensorimotor and premotor corti-
ces, whereas adult-onset patients were characterized by 
structural alterations in prefronto-temporo-limbic and 
subcortical brain regions.7,42 Our study of adult patients 
extends these findings because our analyses revealed that 
(1) age- and disease-predictive GM variation overlapped 
within a prefronto-temporo-limbic pattern identified by 
recent meta-analyses of SZ studies (figure 2),13,43 (2) an 
individual’s deviation from the maturational reference 
trajectory considerably determined its likelihood of being 
classified as patient, particularly in SZ,44 and (3) this sig-
nature of neuroanatomical dysmaturation was present 
across all diagnostic groups, correlating more with age 
of onset and symptom severity than with diagnosis. The 
latter finding agrees with previous studies revealing neu-
roanatomical patterns shared by affective and nonaffec-
tive psychoses,13 as well as earlier disease onsets being 
paralleled by more pronounced brain abnormalities.7 In 
this regard, our results may point to an age-dependent, 
transnosological domain of mental illness that may serve 
as a baseline for exploring more specific neuroanatomical 
biomarkers of different psychiatric phenotypes.

We did not observe significant associations between 
BrainAGE and illness duration in any of the patient 
groups, suggesting that BrainAGE does not capture pro-
gressive structural brain changes previously reported 
in severe mental disorders.9 The finding of a linear 
BrainAGE increase from ARMS to RE-SZ individuals 
(figure  1) rather suggests that BrainAGE represents a 
neuroanatomical vulnerability marker, whose expression 
parallels the accumulating risk for adverse disease out-
comes: risk for disease onset (ARMS-E: 7% transitions, 
ARMS-L: 57% transitions over 4 y) and risk for relaps-
ing disease in RE-SZ vs RO-SZ patients. It is of note that 
the ARMS-E group showed a “decelerated brain aging” 
effect, which might be interpreted as a compensatory 
neural mechanism or maturational delay, as suggested by 
Douaud et al.42

However, due to the cross-sectional design of  our 
study, these observations do not negate progressive 
structural brain alterations in the course of  SZ and 
other psychiatric disorders. Progressive neuroanatomi-
cal abnormalities occurring after disease onset have 
been repeatedly reported by longitudinal studies9 and 
have been linked to illness duration and antipsychotic 
treatment.45 A  likely interpretation of  the nonsignifi-
cant associations between BrainAGE and these clini-
cal variables (table 4; online supplementary analysis 2)  
may be that our multivariate age predictor spanned a 

Fig. 3.  Chronological age vs magnetic resonance imaging (MRI)-
predicted age. Scatter plots and linear fits for chronological age 
vs MRI-predicted age in the HC, SZ, MD, BPD, and ARMS 
groups. ARMS, at-risk mental states; BPD, borderline personality 
disorder; HC, healthy control; MD, major depression; SZ, 
schizophrenia.

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbt142/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbt142/-/DC1
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“neuroanatomical subspace” showing selective sensitiv-
ity for deviations from the normal maturational brain tra-
jectory. Based on this hypothesis, it can be expected that 
clinical phenotypes with a possible neurodevelopmental 

loading, such as “early vs late onset” and “deficit vs 
nondeficit outcome” particularly interfere with a neuro-
anatomical signature of  accelerated brain aging. First, 
this hypothesis may be supported by our clinical SVR 

Fig. 4.  Predictive patterns of support vector machines (SVM)-based age estimation and patient classification. Voxel relevance for 
age prediction (upper panels) and patient vs healthy control (HC) classification (lower panels) was visualized for the gray matter-
Regional Analysis of brain Volumes in Normalized Space (GM-RAVENS; left) and the affinely registered GM data (right) (see online 
supplementary methods 3). Higher absolute voxel weights indicate greater voxel relevance for age prediction or patient classification. 
Age-predictive voxels in the GM-RAVENS condition mapped to subcortical and periventricular, orbitofrontal, cerebellar, limbic, and 
perisylvian regions, whereas a more extended age-predictive pattern involving cingulate, orbitofrontal, perisylvian, subcortical, and (para) 
limbic structures was found in the affine GM condition. Negative weights (cool colors) indicate the inverse relationship between age and 
GM volume/density. In the lower panels, negative voxel weights show patterns of GM volume or density reductions in 302 patients vs  
302 HCs. In voxels with positive weights (warm colors), these relationships are reversed.

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbt142/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbt142/-/DC1
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analysis, which showed that 25% of BrainAGE variance 
in 125 SZ patients was primarily explained by negative 
and disorganization symptoms. This aligns with previ-
ous studies linking these symptoms to neuroanatomi-
cal abnormalities,46,47 cognitive deficits, and poor social 
functioning,48 together forming a “syndrome of acceler-
ated aging” in SZ.11 Second, BrainAGE increases were 
already detectable in antipsychotic-naive ARMS-L 
individuals (+2.7 y). Because the illness duration in the 
RO-SZ patients was only 3.6  months and BrainAGE 
already measured was +4.2 years, an obvious interpreta-
tion may be that BrainAGE increases rapidly aggravate 
from attenuated psychosis to the established illness, in 
line with the hypothesis of  a “late neurodevelopmental 
disturbance.”1,5

Finally, in none of  the patient groups we did detect 
correlations between BrainAGE and alcohol, nico-
tine, or psychotropic medications, including antipsy-
chotics, antidepressants, and mood stabilizers (table 
4). Furthermore, we did not find significant effects of 
alcohol, smoking, educational, marital and occupa-
tional status as well as of  major somatic conditions on 
BrainAGE in HCs (online supplementary analysis 1). 
These negative findings may further support a selec-
tive sensitivity of  BrainAGE for abnormal neurode-
velopment in severe mental illness. In summary, our 
results suggest that the BrainAGE framework provides 
a transnosological biomarker that (1) results from a dis-
ruption of  normal brain maturation shared by different 
psychiatric phenotypes, (2) determines the case-by-case 
diagnostic performance of  MRI-based disease classi-
fiers, and (3) quantifies the risk for unfavorable clini-
cal outcomes. Future investigations should thoroughly 
reevaluate the trait vs state nature of  BrainAGE abnor-
malities and their specificity for neurodevelopmentally 
mediated mental illnesses by linking BrainAGE dynam-
ics to the clinical, neurocognitive, and genetic dimen-
sions of  psychiatric disorders.49,50
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Supplementary material is available at http://schizo 
phreniabulletin.oxfordjournals.org.
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