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Background: Neuropsychological deficits predate overt
psychosis and overlap with the impairments in the estab-
lished disease. However, to date, no single neurocognitive
measure has shown sufficient power for a prognostic test.
Thus, it remains to be determined whether multivariate
neurocognitive pattern classification could facilitate the
diagnostic identification of different at-risk mental states
(ARMS) for psychosis and the individualized prediction
of illness transition.
Methods: First, classification of 30 healthy controls (HC)
vs 48 ARMS individuals subgrouped into 20 ‘‘early,’’ 28
‘‘late’’ ARMS subjects was performed based on a compre-
hensive neuropsychological test battery. Second, disease
prediction was evaluated by categorizing the neurocogni-
tive baseline data of those ARMS individuals with tran-
sition (n 5 15) vs non transition (n 5 20) vs HC after 4
years of follow-up. Generalizability of classification was
estimated by repeated double cross-validation.
Results: The 3-group cross-validated classification accu-
racies in the first analysis were 94.2% (HC vs rest), 85.0%
(early at-risk subjects vs rest), and, 91.4% (late at-risk
subjects vs rest) and 90.8% (HC vs rest), 90.8% (convert-
ers vs rest), and 89.0% (nonconverters vs rest) in the sec-
ond analysis. Patterns distinguishing the early or late
ARMS from HC primarily involved the verbal learning/
memory domains, while executive functioning and verbal
IQ deficits were particularly characteristic of the late
ARMS. Disease transition was mainly predicted by exec-
utive and verbal learning impairments.
Conclusions: Different ARMS and their clinical out-
comes may be reliably identified on an individual basis
by evaluating neurocognitive test batteries using multi-
variate pattern recognition. These patterns may have the
potential to substantially improve the early recognition
of psychosis.
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Introduction

Neurocognitive deficits have been described as a core
feature of schizophrenic psychosis affecting cognitive
performance particularly within the domains of process-
ing speed, verbal learning, and executive functioning.1

Some of these deficits seem to emerge early in the course
of the disease and may be traced even in different at-risk
mental states (ARMS) for the illness. In this context, the
state of ultrahigh risk (UHR) for psychosis characterized
by attenuated and/or brief limited intermittent psychotic
symptoms may involve abnormalities across a range of
cognitive abilities including speed of processing, working
memory, sustained attention, cognitive flexibility, and
verbal memory.2–7 This cross-domain neurocognitive
pattern overlaps with the profound deficits observed in
the established disease, albeit not reaching the level of im-
pairment seen in the full clinical picture of the disorder.
This latter observation suggests that task performance
may either deteriorate within specific cognitive domains
during transition to psychosis as shown by cross-
sectional and longitudinal findings in different ARMS
populations,7–9 or alternatively may result from a higher
conversion rate in the UHR compared with lower risk
states. Furthermore, neuropsychological investigations
of an early, ie, initial ARMS as defined by subtle
cognitive-perceptual ‘‘basic’’ symptoms10,11 found that
these individuals already exhibited executive control
impairments compared with healthy volunteers.9 Taken
together, these data revealed patterns of neurocognitive
deficits that predate the onset of the overt disease and
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hence may substantially improve the difficult clinical de-
tection of initial prodromal stages. This could facilitate
an earlier commencement of therapeutic approaches
aimed at ameliorating signs and symptoms and even pre-
venting the onset of psychosis.12

This promising perspective has increasingly moved
into the research focus because the current risk assess-
ment strategies have to date produced only modest
1-year prediction rates ranging from 9% to 54% by relying
solely on operationalized psychopathological criteria.13 In
this regard, previous investigations found that reduced
baseline performance in verbal IQ, verbal/working mem-
ory, and olfactory identification tasks may distinguish
subsequent converters from non converters in a clinically
defined ARMS.3,14,15 Furthermore, Lencz et al5 and
Riecher-Rössler et al16 consistently reported that the pre-
diction of disease transition could be substantially im-
proved to an accuracy of up to 80% by using linear
regressionmodels that combined both psychopathological
and neurocognitive measures. In contrast to these results,
a recent multicenter investigation of the North American
Longitudinal Prodromal Study17 found that neuropsycho-
logical data did not provide additional predictive power
beyond multivariate clinical prediction models.18 More-
over, it is still unclear whether a neurocognition-based pre-
diction of psychosis will generalize to ARMS individuals
not used for deriving the respective diagnostic models.
This means that diagnostic validity has to be assessed ei-
ther in independent test populations or estimated using
rigorous cross-validation (CV) that separates the training
from validation data throughout the model generation
process. Thus, it has to be elucidated whether neurocog-
nitive abnormalities in the ARMS reliably enhance the
early detection of different prodromal stages and the pre-
diction of subsequent disease manifestation to a level
allowing for single-subject inferences.

A valid answer to this question has to address major
methodological obstacles. First, the considerable intrain-
dividual variability of single neuropsychological tests may
blur diagnostically relevant information. This low signal-
to-noise ratio of single test measures could be substantially
increased by using multivariate approaches in order to ex-
tract high-dimensional discriminative patterns across com-
prehensive neuropsychological test batteries. However, it
will be insufficient to detect discriminative patterns that
perfectly describe specific diagnostic boundaries in a given
training population. This overfitting problem may be re-
solved by using a machine-learning framework capable of
detecting multivariate patterns of neuropsychological
deficits that generalize well to unseen individuals.19 In
this context and based on our own experiences withMag-
netic Resonance Imaging (MRI)-based multivariate pre-
diction models,20–23 we employed the support-vector
machine (SVM)24 in conjunction with ensemble learning
methods25,26 in order to evaluate whether potentially
complex patterns of cognitive ability derived from the

combination of several neuropsychological tests may fa-
cilitate the individualized recognition of different ARMS
and the prediction of frank psychosis.

Methods

Study Participants

Forty-eight individuals in an ARMS for psychosis and 30
healthy controls (HC) matched group-wise for age, gen-
der, and premorbid verbal IQ (tables 3 and 4) were
recruited at the Early Detection and Intervention Center
forMental Crises, Department of Psychiatry and Psycho-
therapy, Ludwig-Maximilian-University, Germany, for
neuropsychological testing using operationalized criteria
as detailed in9,22,27–34 and table 1. These criteria were
based on a 2-stage concept of the ARMS, distinguishing
between (1) an early ARMS (ARMS-E), mainly defined
by the presence of basic symptoms9–11 and associated
with an increased, but not imminent risk of psychosis
and (2) a ‘‘late’’ ARMS (ARMS-L), characterized by
an ultrahigh risk for psychosis following the Personal As-
sessment of Crisis Evaluation (PACE) criteria.37,38 Can-
didate ARMS and HC individuals were carefully
screened for the exclusion criteria listed in table 1 by eval-
uating the personal and familial history using a semistruc-
tured clinical interview and the structured clinical
interview forDiagnostic and Statistical Manual of Mental
Disorders, Fourth Edition, (DSM-IV).39 Additionally,
ARMS individuals were rated using the Global Assess-
ment of Functioning (GAF) Scale of the DSM-IV, the
Positive and Negative Symptom Scale (PANSS),40 and
the Montgomery-Åsberg Depression Rating Scale
(MADRS).41 It is of note that 80%/0% of the ARMS/
HC subjects analyzed in the present study overlapped
with the cohort previously used for a MRI-based pattern
recognition analysis.22 Moreover, an overlapping popu-
lation was recently assessed for neuroanatomical corre-
lates of executive dysfunction.42

Included ARMS individuals were seen weekly in the
first month, monthly in the first year, quarterly in the sec-
ond year, and thereafter annually to detect possible tran-
sitions to psychosis according to the criteria of Yung
et al35: PANSS scores of 4 or above on the hallucination
item (P3) or scores of 5 or above on the unusual thought
content (G9), suspiciousness (P6), or conceptual disorga-
nization (P2) items. Symptoms had to occur daily and per-
sist for more than 1 week to be deemed a transition to
frank psychosis. ARMS individuals were assigned to the
transition group (ARMS-T) if they met these criteria
once during the follow-up period of 4 years and had a di-
agnosis of schizophrenia spectrum disorder 1 year after
transition following the International Classification of
Diseases-10 research criteria. Follow-up information
could be obtained from35 subjects 3.9 (SD: 1.2) years after
study inclusion, including 15 converters (ARMS-T: n = 11,
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schizophrenia; 4, schizoaffective psychosis; average
(minimum–maximum) time to transition: 210.7 (40–777)
days) and 20 nonconverters (ARMS-NT: n = 14, no diag-
nosis; 3, major depression; 1, bipolar disorder; 1, adjust-
ment disorder; 1, conversion disorder). The conversion
group consisted of 14ARMS-L and 1ARMS-E individual
(transition rates: 66.7% of followed ARMS-L, 7.1% of fol-
lowed ARMS-E cases). No ARMS-NT subject met the
transition criteria during the study period. None of the
ARMS individuals had received antipsychotic medication
prior to neuropsychological testing. No follow-up was
available in 13 subjects (27.3%), of whom 6 could not
be contacted or refused to participate, and 7 had not com-
pleted the follow-up interval. We did not find significant
sociodemographic or neurocognitive baseline differences
between ARMS individuals with and without available
clinical follow-up information (see table 2 in online supple-
mentary material). All subjects provided their written in-
formed consent before study inclusion. The study was
approved by the Local Research Ethics Committee of
the Ludwig-Maximilian-University.

Neurocognitive Testing

A cross-domain neuropsychological test battery comprising
9 standardized tests was administered to all subjects by
trained master-level neuropsychologists (K.K., J.S., and
P.D.) to assess premorbid verbal IQ, processing speed,
working memory, verbal, and visual memory as well as ex-
ecutive functions (table 2). These tests have been previously
employed to study neurocognitive alterations in the ARMS
for psychosis.9,50 From the acquired neurocognitive data,
12 test variables were computed (table 2) and adjusted
for the effects of age and gender using partial correlations.
The adjusted scores were z-transformed based on the re-
spective HC data and entered analyses of variance
(ANOVAs) that assessed between-group differences in
each neurocognitive measure for (1) HC vs ARMS, (2)
HC vs ARMS-E vs ARMS-L, and (3) HC vs ARMS-
NT vs ARMS-T. Adjustment for multiple comparisons
was performed across the 12 neurocognitive measures using
Holm’s sequential method.50,51 Significance was defined at
P < .05, family-wise error corrected. Significant between-
group effects were examined for pairwise differences using
post-hoc Bonferroni tests.
Additionally, associations between the ARMS individu-

als’ neurocognitive test measures and their clinical ratings
(GAF, MADRS, and PANSS) were explored in a supple-
mentary analysis (see table 1 in online supplementary ma-
terial). Again, the exploratoryP values of this analysis were
corrected formultiple comparisons usingHolm’s sequential
method51 (significance level at P < .05).

Neurocognitive Pattern Classification

SVM are multivariate statistical methods that have been
successfully employed as biomedical diagnostic tools

Table 1. Inclusion Criteria for the ARMS Subjects/Exclusion
Criteria.

ARMS-E: ARMS subjects without Attenuated Psychotic Symptoms
(APS) and/or Brief Limited Intermittent Psychotic Symptoms
(BLIPS) .
(1) . having one or more of the following basic symptoms

appeared first at least 12 mo prior to study inclusion and several
times per week during the last 3 mo.
Thought interferences
Thought perseveration
Thought pressure
Thought blockages
Disturbances of receptive language, either heard or read
Decreased ability to discriminate between ideas and perception,
fantasy and true memories

Unstable ideas of reference (subject-centrism)
Derealization
Visual perception disturbances
Acoustic perception disturbances
and/or

(2) . showing a reduction in the Global Assessment of
Functioning Score (DSM-IV) of at least 30 points (within the
past year) combined with at least one of the following trait
markers:
First-degree relative with a lifetime-diagnosis of schizophrenia or
a schizophrenia spectrum disorder

Pre- or perinatal complications

ARMS-L: ARMS subjects with or without basic symptoms, with or
without global functioning & trait markers .

(1) . having at least one of the following APS within the last 3 mo,
appearing several times per week for a period of at least 1 wk:
Ideas of reference
Odd beliefs or magical thinking
Unusual perceptual experiences
Odd thinking and speech
Suspiciousness or paranoid ideation

and/or
(2) . having at least one of the following BLIPS, defined as the

appearance of one of the following psychotic symptoms for less
than 1 wk (interval between episodes at least 1 wk), resolving
spontaneously:
Hallucinations
Delusions
Formal thought disorder
Gross disorganized or catatonic behavior

Exclusion criteria

Disease transition as defined by Yung et al35

A past or present diagnosis of schizophrenia spectrum and bipolar
disorders, as well as delirium, dementia, amnestic, or other
cognitive disorders, mental retardation, and psychiatric disorders
due to a somatic factor, following the DSM-IV criteria

Developmental and personality disorders, following the DSM-IV
criteria

Alcohol or drug abuse within 3 mo prior to examination, following
the DSM-IV criteria

A past or present inflammatory, traumatic or epileptic diseases of
the central nervous system

Any previous treatment with antipsychotics prior to neurocognitive
assessment

Healthy controls: positive familial history of schizophrenic or
affective psychoses in the first-degree relatives

Note: ARMS, At-Risk Mental State for psychosis; ARMS-E,
early ARMS subgroup; DSM-IV, Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition.
Adopted From Häfner et al.36
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because of their primary strength, which is providing op-
timal methods for classifying single individuals, rather
than simply describing statistical group differences (see
also the methodological comparison of different classifi-
cation algorithms in table 5 of the online supplementary
material). In our case, the 12 different neuropsycholog-
ical test scores were used by the SVM to determine the
best nonlinear classification model that reliably predicted
the study participants’ group membership in 3 different
analyses: (1) HC vs ARMS, (2) HC vs ARMS-E vs
ARMS-L, and (3) HC vs ARMS-NT vs ARMS-T. As
customary in predictive analytics, the SVMmodel is con-
structed from one set of subjects (the training sample)
and applied to a different set of subjects (the test sample),
using CV (see Methods in online supplementary mate-
rial). This process produces an unbiased estimate of
the expected diagnostic and prognostic accuracy of the
SVM model on new individuals, rather than merely fit-
ting the current patient group. The principles of generat-
ing and validating predictive SVM models on separate
training and testing samples of a study population
have been detailed in our previous work.22

In summary, the neurocognitive data of the training
sample were first adjusted for age and gender effects using
partial correlations. The residualswere projected to a high-
dimensional feature space using the radial basis functions
in order to account for nonlinear relations between the
neurocognitive data and the group membership of the
training subjects. In this feature space, the SVM algorithm
found the optimal between-group boundary by maximiz-
ing the geometric distance between the most similar sub-
jects of opposite groups (the support vectors [SV]).24,52,53

It has been shown that this ‘‘maximum-margin’’ principle

in conjunction with the nonlinear projection generates
classification rules that are adaptive to subtle between-
group differences and therefore generalize well to new indi-
viduals.24

The groupmembership of unseen test subjects was pre-
dicted by first applying the adjustment and nonlinear
transformation parameters of the training sample to
the test sample. Then, the trained binary SVM models
(eg,: HC vs ARMS-E) determined the geometric posi-
tions of the test subjects relative to the ‘‘learned’’ decision
boundary, resulting in a decision value and a groupmem-
bership prediction for each test subject. In the 3-group
analyses 1 and 2, we used these decision values to con-
struct multigroup classifiers, where the binary SVM
model with the maximum decision value decided about
the test subject’s group membership.
This SVM training and validation scheme was wrap-

ped in a repeated nested CV analysis (see Methods in
online supplementary material).23,54 On the outer loop
of this analysis, we performed 50 repetitions of the fol-
lowing CV cycle. First, the order of the subjects was per-
muted within each group and then the entire population
was split into ten nonoverlapping samples. Each of these
samples was iteratively held back as validation data,
while the 9 remaining samples entered the inner CV
loop. This outer CV loop produced a robust and unbi-
ased estimate of classification generalizability based on
a large number of validation samples that were strictly
separated from the entire training process performed
on the inner loop. At this inner loop, we used 10-fold
CV with 10 repetitions to generate ensembles of SVM
models. More specifically, for each validation sample
at the outer CV level, 100 different training data

Table 2. Neuropsychological Test Battery.

Cognitive Domain Variables

Premorbid verbal IQ
Mehrfach-Wortschatztest B (MWT-B)43 1. Raw score correct

Processing speed
Trail-Making Test, part A (TMT-A)44 2. Time to completion (s)
Digit Symbol Test (DST, WAIS-III)45 3. Raw score correct

Working Memory
Digit Span Test (DS, WAIS-III)45 4. Raw score correct
Letter Number Span Test (LNS)46 5. Raw score correct
Subject-Ordered Pointing Task (SOPT)47 6. Error score

Verbal Learning and Memory
Rey Auditory Verbal Learning Test (RAVLT)48 7. Sum of raw score correct after trials 1–5 (RAVLT-IR)

8. Raw score correct after delayed recall (RAVLT-DR)
9. Retention: difference between raw score correct in trial 5 and delayed recall

(RAVLT-Ret)
Executive Functions
Trail-Making Test, part B (TMT-B)44 10. Time to completion (s)

11. Difference between TMT-B and TMT-A (TMT-[B"A])
Verbal Fluency (letters) (VF)49 12. Sum of correct responses

Cognitive domains were defined according to Schultze-Lutter et al.50
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Table 3. Analysis of Sociodemographic, Clinical and Global Anatomical Variables.

HC ARMS T/v2 P ARMS-E ARMS-L F/v2 P ARMS-NT ARMS-T F/v2 P

Sociodemographic Variables

N 30 48 20 28 20 15

Age: mean (SD) (years) 26.0 (2.7) 24.7 (5.8) 1.41 .162 25.0 (5.6) 24.5 (5.9) 0.80 .456 25.8 (6.8) 22.8 (3.8) 2.88 .063

Gender: male/female (%) 18/12 (60/40) 32/16 (66.7/33.3) 0.36 .630 13/7 (65/35) 19/9 (67.9/32.1) 0.40 .834 14/6 (70/30) 11/4 (73.3/26.7) 1.00 .662

School education: mean
(SD) (years)

12.4 (1.2) 12.0 (1.2) 1.72 .090 12.3 (1.0) 11.8 (1.2) 2.55 .085 11.9 (1.2) 11.9 (1.1) 1.69 .192

Number (%) of
first-degree
relatives with
schizophrenic
psychoses

– 6 (12.5) – – 4 (20) 2 (7.1) 1.64 .379 4 (20) 1 (7.1) 1.19 .379

Number (%) of
first-degree
relatives with affective
psychoses

– 9 (18.8) – – 3 (15) 6 (22.2) 0.39 .713 4 (20) 4 (28.6) 0.34 .689

HC ARMS T/v2 P ARMS-E ARMS-L F P ARMS-NT ARMS-T F P

Clinical Variables: mean (SD)

GAF score – 58.6 (10.8) – – 60.1 (8.4) 57.3 (12.5) 0.76 .451 58.6 (10.9) 59.9 (14.2) "0.24 .814

PANSS total score – 62.6 (18.7) – – 59.9 (14.5) 64.9 (21.6) "0.81 .422 52.9 (11.8) 65.5 (20.5) "1.96 .062

PANSS positive score – 12.8 (4.5) – – 10.8 (3.5) 14.5 (4.7) "2.80 .008* 11.4 (4.2) 13.5 (4.2) "1.20 .242

PANSS negative score – 16.5 (7.7) – – 15.9 (6.7) 17.0 (8.6) "0.42 .676 12.1 (4.9) 19.4 (8.4) "2.78 .011*

PANSS general score – 33.3 (9.5) – – 33.2 (7.8) 33.4 (11.0) "0.61 .952 29.5 (6.1) 32.6 (11.3) "0.74 .477

MADRS score – 17.5 (9.4) – – 19.7 (7.8) 15.8 (10.5) 1.18 .247 17.7 (5.4) 11.1 (9.8) 2.02 .057

Note: ARMS, At-Risk Mental State for psychosis; ARMS-E, early ARMS subgroup; ARMS-L, late ARMS subgroup; ARMS-NT, nontransition subgroup; ARMS-T,
transition subgroup; GAF, Global Assessment of Functioning; HC, Healthy Control subjects; PANSS, Positive and Negative Symptom Scale; F, main effect’s F value;
T Student’s t-test value; v2, Pearson v2 value; MADRS, Montgomery-Åsberg Depression Rating Scale. Schooling years, clinical, and global anatomical variables were
assessed using ANCOVA designs, with group entered as main effect and age and gender defined as covariates of no interest. All P values are two-sided and exact in case of
nonparametric tests.
*Significant at P<0.05.

5

N
eurocognition-based

E
arly

R
ecognition

and
D
isease

P
rediction

in
A
R
M
S

 at Universitaetsbibliothek Muenchen on May 18, 2011 schizophreniabulletin.oxfordjournals.org Downloaded from 

http://schizophreniabulletin.oxfordjournals.org/


Table 4. Statistical Analysis of Between-Group Differences in the 12 Neurocognitive Test Measures.

HC vs ARMS: t-test HC vs ARMS-E vs ARMS-L: ANOVA & Post-Hoc Analyses HC vs ARMS-NT vs ARMS-T: ANOVA & Post-Hoc Analyses

HC ARMS ARMS-E ARMS-L ARMS-NT ARMS-T

Raw Raw Z F P Raw Z Raw Z F P
HC vs
ARMS-E

HC vs
ARMS-L

ARMS-E
vs

ARMS-L Raw Z Raw Z F P

HC vs
ARMS-
NT

HC vs
ARMS-T

ARMS-
NT vs

ARMS-T

MWT-B (IQ) 109.7
(8.3)

106.7
(14.3)

"0.2
(1.8)

0.4 .539 107.3
(14.3)

"0.2
(1.6)

106.3
(14.6)

"0.3
(1.0)

0.2 .819 108.9
(13.8)

"0.1
(1.7)

107
(16.8)

0.0
(1.9)

0.0 .977

DST 67.8
(10.5)

60
(12.5)

"0.8
(1.3)

7.7 .007 64
(13.8)

"0.4
(1.0)

57.2
(10.8)

"1.0
(1.1)

6.1 .003* 0.852 0.003 0.133 59.5
(14.3)

"0.8
(1.4)

57.7
(8.8)

"0.9
(0.8)

4.9 .010

DS 17.4
(3.6)

17
(4.2)

"0.1
(1.1)

0.1 .771 17.4
(4.5)

0.0
(2.8)

16.8
(4.1)

"0.1
(2.3)

0.2 .845 18.2
(3.7)

0.2
(0.9)

16.8
(4.7)

"0.1
(1.2)

0.4 .668

LNS 17.8
(1.3)

16.8
(3.8)

"0.7
(2.8)

1.7 .194 17.3
(3.8)

"0.4
(1.3)

16.4
(3.8)

"0.9
(1.0)

1.2 .303 17.2
(4.9)

"0.5
(3.5)

16.9
(2.4)

"0.4
(1.7)

0.3 .728

TMT-A 24.8
(5.6)

28.3
(8.4)

"0.5
(1.4)

3.0 .089 25.9
(7.5)

"0.1
(1.0)

30.1
(8.7)

"0.8
(1.5)

3.5 .036 26.1
(8.9)

"0.2
(1.3)

29.4
(7.1)

"0.5
(1.3)

0.9 .412

TMT-B 48
(13.3)

69.2
(25.3)

"1.3
(1.6)

15.3 .000* 63.7
(26.2)

"0.9
(1.4)

73.1
(24.5)

"1.5
(1.3)

8.8 .000* 0.066 0.000 0.484 68.7
(29.5)

"1.3
(1.8)

76.5
(19.6)

"1.5
(1.1)

9.0 .000* 0.003 0.002 1.00

TMT-(B"A) 23.2
(12.4)

40.9
(21.7)

"1.2
(1.5)

14.0 .000* 37.9
(22.3)

"1.0
(1.3)

43
(21.4)

"1.3
(1.0)

7.3 .001* 0.042 0.001 1.00 42.6
(23)

"1.4
(1.6)

47.2
(19.5)

"1.4
(1.3)

9.5 .000* 0.001 0.003 1.00

SOPT 1.5
(1.3)

4.7
(3.3)

"2.2
(2.2)

25.6 .000* 5.3
(4.2)

"2.6
(1.8)

4.3
(2.5)

"1.9
(1.0)

13.8 .000* 0.000 0.001 0.552 5.2
(3.6)

"2.4
(2.4)

4.7
(2.5)

"2.1
(1.6)

15.4 .000* 0.000 0.010 1.00

RAVLT-IR 64
(5.6)

55.3
(10.8)

"1.3
(1.7)

14.8 .000* 57.2
(12.2)

"1.0
(0.0)

53.9
(9.8)

"1.5
(0.0)

8.1 .001* 0.052 0.001 0.771 55.1
(13.3)

"1.4
(2.0)

54.5
(9.4)

"1.3
(1.5)

6.8 .002* 0.006 0.019 1.00

RAVLT-DR 14.1
(1.2)

11.8
(3.3)

"1.6
(2.5)

11.1 .001* 12.5
(3.1)

"1.1
(12)

11.3
(3.4)

"1.9
(12)

6.6 .002* 0.191 0.002 0.511 12.2
(3.8)

0.4
(2.6)

11.1
(3.5)

1.5
(2.5)

5.4 .007

RAVLT-Ret 0.3
(0.8)

1.2
(1.7)

"0.9
(2.0)

5.4 .023 1.0
(1.3)

"0.8
(1.2)

1.3
(1.9)

"1.0
(1.2)

2.8 .066 0.6
(1.3)

"0.2
(1.6)

1.6
(2.0)

"1.3
(2.3)

3.8 .028

VF 35.1
(6.3)

33.3
(10.2)

"0.2
(1.7)

0.2 .623 34.1
(11.5)

"0.1
(0.0)

32.7
(9.4)

"0.2
(0.0)

0.2 .823 32.3
(9.9)

"0.4
(1.6)

33.4
(11.5)

0.0
(1.7)

0.7 .516

Neurocognitive test scores were adjusted for the effects of age and gender and standardized according to respective means and SDs of the HC data. For each neurocognitive
test variable, statistical comparisons were conducted to evaluate group-level differences between HC vs ARMS (t-test) as well as HC vs ARMS-E vs ARMS-L and HC vs
ARMS-NT vs ARMS-T (ANOVA). The Holm-Bonferroni correction was employed to correct the P values for multiple comparisons and significant between-group
differences were flagged with an asterisk. In these cases, a Bonferroni post-hoc analysis was carried out to determine the significance of pairwise group differences.
Abbreviations of neuropsychological test variables are detailed in table 2.
*Significant at P<0.05.
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partitions were created at the inner CV level. In each of
these 100 training partitions, the most discriminative sets
of neurocognitive features were determined. Each of
these sets was used to train a separate SVM model.
Then, each of these models predicted the group member-
ship of the unseen validation subjects on the outer loop.
These predictions were averaged across all 100 training
partitions to yield an ensemble decision. Finally, for
each validation subject, all SVM ensemble decisions
were aggregated across those outer training partitions,
in which this subject had not been involved in the training
process. Majority voting was used to determine the final
out-of-training group membership for each validation
subject (tables 5 and 6).
This ensemble learning approach has proven to achieve

robust classification because it greatly reduces the risk of
unfortunate selections of poorly performing single classifiers
by averaging the diagnostic decisions of numerous predic-
tive models. Furthermore, this approach improves classifi-
cation generalizability particularly in small samples because
it increases the classifiers’ ability to detect complex decision
boundaries by means of training sample variation.25

The performance of these binary and multigroup
ensembleclassifiersontheunseenvalidationdatawasmea-
sured in termsof sensitivity, specificity, balanced accuracy
(BAC), positive/negative predictive value (PPV/NPV),
and false positive rate. The discriminative neurocognitive
patterns that formed thebasis for theclassifiers’ diagnostic
decisions were first evaluated by computing each neuro-
cognitive measure’s probability of being selected as dis-
criminative feature across each classification analysis

(figure 2). Second, the nonlinear discriminative neurocog-
nitive patterns were approximated by computing for each
neurocognitivemeasure,thedifferencebetweentherespec-
tive model’s SV.22 Then, the mean and SE of these SV dif-
ferences was computed across all SVM models to form
discriminative neurocognitive profiles (figure 3). Neuro-
cognitive features with zero-crossing SEs were considered
unreliableatthe95%confidencelevel.Third,wequantified
the importance of single neurocognitive variables in the
ARMS-NT vs ARMS-T analysis by removing one neuro-
cognitive measure at a time and repeating the entire classi-
fication experiment (see figure 1 and table 3 in online
supplementary material).

Results

Age, gender, education, and premorbid verbal IQ (tables
3 and 4) did not differ significantly in ARMS vs HC, HC
vs ARMS-E vs ARMS-L, and HC vs ARMS-NT vs
ARMS-T. A trend difference was observed in the
mean age of the HC, ARMS-E, and ARMS-L groups
(table 3). Thus, in order to minimize age- and also pos-
sible gender-related effects, we adjusted the data for these
covariates in all classification analyses using partial cor-
relations. Furthermore, we studied the impact of using
unadjusted data in the ARMS-NT vs ARMS-T analysis
(see table 4 in online supplementary material).
The ARMS samples did not differ with respect to the

prevalence of schizophrenic or affective psychosis in the
first-degree relatives. Global functioning was similarly re-
duced in the ARMS-E and ARMS-L, ARMS-T and

Table 5. Two-group classification performance: Theperformance of the binary SVMensemble classifiers (group ‘‘þ1’’ vs group ‘‘"1’’)was
evaluated (1) by constructing a binary SVM ensemble from all SVM base learners of a CV1 partition, in which the respective CV2 test
subjects hadnot been included, (2) by computing the average decision value in each of these binaryCV1 ensembles in order to determine the
groupmembership (averagedecisionvalue>0or<0)of the respectiveCV2test subjects and (3) throughmajorityvotingacross thosebinary
CV1SVMensembles, inwhich theCV2 test subjects hadnot participated in the training process (see also theMethods section for a detailed
explanation of the employed ensemble learning framework).

Binary classifiers TP TN FP FN Sensitivity (%) Specificity (%) BAC (%) FPR (%) PPV (%) NPV (%)

Neurocognitive SVM analysis: 30 HC vs 48 ARMS
HC vs ARMS 24 46 2 6 95.8 80.0 87.9 4.2 92.3 88.5

Neurocognitive SVM analysis: 30 HC vs 20 ARMS-E vs 28 ARMS-L
HC vs ARMS-E 30 18 2 0 90.0 100 95.0 10.0 93.8 100
HC vs ARMS-L 26 25 3 4 89.3 86.7 88.0 10.7 89.7 86.2
ARMS-E vs ARMS-L 10 28 0 10 100 50.0 75.0 0.0 100 73.7

Neurocognitive SVM analysis: 30 HC vs 20 ARMS-NT vs 15 ARMS-NT
HC vs ARMS-NT 28 16 4 2 80.0 93.3 86.7 20.0 87.5 88.9
HC vs ARMS-T 30 13 2 0 86.7 100 93.3 13.3 93.8 100
ARMS-NT vs ARMS-T 15 12 3 5 80.0 75.0 77.5 20.0 83.3 70.6

Note: ARMS, At-Risk Mental State for psychosis; ARMS-E, early ARMS subgroup; ARMS-L, late ARMS subgroup; ARMS-NT,
nontransition subgroup; ARMS-T, transition subgroup; HC, Healthy Control subjects, SVM, support-vector machine, CV, cross-
validation.
Balanced accuracy (BAC), false positive rate (FPR), positive predictive value (PPV) and negative predictive value (NPV) were
calculated from the confusion matrix containing the number of true positives (TP), false negatives (FN), true negatives (TN), and false
positives (FP).
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ARMS-NT groups. A significantly higher PANSS positive
score was observed in ARMS-L vs ARMS-E individuals.
The ARMS-T group was characterized by a significantly
higher PANSS negative score, a trend toward a higher
PANSS total score and a lower MADRS score compared
with ARMS-NT. Correlations between PANSS total and
negative scores and rey auditory verbal learning test
(RAVLT)-DR and RAVLT-Ret measures were detected
in our supplementary analysis using an exploratory thresh-
old of P < .05 (See table 1 in online supplementary mate-
rial). However, these correlations did not survive
correction for multiple comparisons.

Neurocognitive Analysis of HC vs ARMS Individuals

Univariate Results. After correction for multiple com-
parisons, cognitive set shifting (trail-making test [TMT]-
B,TMT-[B"A]),visualworkingmemory(subject-ordered
pointing task [SOPT]), and verbal learning/memory
(RAVLT-IR, RAVLT-DR) was significantly impaired
in ARMS vs HC subjects (table 4).

SVMClassification Analysis. The binary HC vs ARMS
classification performance in the CV2 test data was high
(BAC = 87.9%, sensitivity = 95.8%, specificity = 80%,
PPV = 92.3%, and NPV = 88.5%; table 5, figure 1A). Fig-
ures 2A and 3A show that the highest feature selection
probabilities and reliable group differences were obser-
ved for premorbid verbal IQ (Mehrfach-Wortschatztest
[MWT]-B), cognitive set shifting (TMT-B, TMT-[B"
A]), visual working memory (SOPT), and verbal learning
(RAVLT-IR, RAVLT-DR).

Neurocognitive Analysis of HC vs ARMS-E vs ARMS-L
Individuals

UnivariateResults. The performance reductions detected
in the entire ARMS group vs HC were also found in the
HC vs ARMS-E vs ARMS-L analysis, with the digit sym-
bol test (DST) being additionally involved (table 4). The
post-hoc analysis revealed that the ARMS-L group
showed significant performance deficits across these neu-
rocognitive measures, ranging 1–2 SD below the HC

Table 6. Three-group classification performance: The multigroup SVM ensemble classifier was constructed by (1) generating multigroup
SVMbase learners thoughpairwise coupling theaveragebinaryCV1ensembles’ decisionvalueson theCV2 testdataand (2) aggregating the
multigroup base learners across all CV1 partitions, in which the CV2 test data had not been part of the training samples (out-of-training
prediction; OOT).

HC vs ARMS-E vs ARMS-L HC vs ARMS-NT vs ARMS-T

Clinical groups

SVM predicted classes

Clinical groups

SVM predicted classes

HC ARMS-E ARMS-L HC ARMS-NT ARMS-T

HC 29 0 1 HC 29 1 0

ARMS-E 2 14 4 ARMS-NT 3 16 1

ARMS-L 2 0 26 ARMS-T 2 1 12

OOT-performance OOT-performance

TP 29 14 26 TP 29 16 12

TN 44 58 45 TN 30 43 49

FP 4 0 5 FP 5 2 1

FN 1 6 2 FN 1 4 3

Sensitivity (%) 96.7 70.0 92.6 Sensitivity (%) 96.7 80.0 80.0

Specificity (%) 91.7 100.0 90.0 Specificity (%) 85.7 95.6 98.0

Balanced accuracy (%) 94.2 85.0 91.4 Balanced accuracy (%) 90.8 90.8 89.0

False positive rate (%) 8.3 0.0 10.0 False positive rate (%) 14.3 4.4 2.0

Positive predicitive value (%) 87.9 100.0 83.9 Positive predicitive value (%) 85.3 88.9 92.3

Negative predictive value (%) 97.8 90.6 95.7 Negative predictive value (%) 96.8 91.5 94.2

Overall accuracy: 88.5% Overall accuracy: 87.7%

Note: ARMS, At-Risk Mental State for psychosis; ARMS-E, early ARMS subgroup; ARMS-L, late ARMS subgroup; ARMS-NT,
nontransition subgroup; ARMS-T, transition subgroup; HC, Healthy Control subjects; TP, true positives; FN, false negatives; TN,
true negatives; FP, false positives; SVM, support-vector machine; CV, cross-validation.
The class membership of an outer cross-validation (CV2) test subject was determined (1) by the binary classifier with the maximum decision
value among all binary SVMs within the respective multigroup base learner and (2) through majority voting across all multigroup base
learners (see also the Methods section for a detailed explanation of the employed ensemble learning framework). The out-of-training
classification performance of the multigroup SVM ensemble was then evaluated for one group against all other groups. For example, in the
HC vs ARMS-E vs ARMS-L analysis 29 HC subjects of 30 (sensitivity: 96.7%) were correctly assigned to their group, while 44 of 48 (91.7%)
ARMS subjects were correctly not labeled as HC, resulting in a balanced accuracy of (96.7%þ 91.7%)/2 = 94.2%. The overall accuracy of
the multigroup SVM ensemble was the proportion of all unseen CV2 test subjects correctly classified by the SVM classifier ensembles.
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group. Significant performance reductions in ARMS-E vs
HC were confined to the TMT-(B"A) and the SOPT. No
significant group-level differences were observed in
ARMS-E vs ARMS-L.

SVM Classification Analysis. The 3-group classification
accuracy was 88.5% (table 6; figure 1C, left). Only one HC

wasmislabeledasARMS-L(HCvsrest: sensitivity=96.7%,
specificity=91.7%,BAC=94.2%).TwoARMS-Eweremis-
labeled asHCand 4 asARMS-L (ARMS-E vs rest: 70.0%,
100%,and85.0%).TwoARMS-Lweremisclassified asHC
(ARMS-L vs rest: 92.6%, 90%, and 91.4%). Among the
binary classifiers, the highest BAC (sensitivity, specificity)
of 95% (90% and 100%) was observed in HC vs ARMS-E,

Fig. 1.Out-of-training prediction probabilities in the three classification analyses.A:HCvs at-riskmental states (ARMS) analysis, B: Binary
prediction probabilities in the healthy controls (HC) vs ARMS-E vs ARMS-L analysis (left) and HC vs ARMS-NT vs ARMS-T
analysis (right), C:Multigrouppredictionprobabilities in theHCvsARMS-EvsARMS-Lanalysis (left) andHCvsARMS-NTvsARMS-T
analysis (right).
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followedby88%(89.3%and86.7%) inHCvsARMS-Land
75.0% (100% and 50%) in ARMS-E vs ARMS-L (table 5;
figure 1B, left).

The discriminative pattern of HC vs ARMS-E (figure
2B) showed high selection probabilities in the working
memory (Letter number span [LNS], SOPT: >90% of

Fig. 2.Neurocognitive feature selection probabilities. In each inner cross-validation (CV1) training sample, the set of neurocognitive features
used by an support-vector machine (SVM) ensemble to categorize between the study groups was optimized by means of recursive classifier
elimination (ensemble thinning, see Methods in online supplementary material). This procedure removed SVM classifiers containing
irrelevant/redundant neurocognitive variables from the respective SVM ensembles. Thus, we were able to compute the feature selection
probabilityof eachneurocognitive variable as the ratiobetween thenumberofSVMmodels thatused the respective variable asdiscriminative
featureandthe totalnumberofSVMmodels (see table6 inonline supplementarymaterial) acrossallCV1trainingdatapartitions ineachof the
following classification analyses: A: healthy controls (HC) vs at-risk mental states (ARMS), B: HC vs ARMS-E vs ARMS-L, C: HC vs
ARMS-NT vs ARMS-T.
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all models) and verbal learning/memory domain
(RAVLT-IR, RAVLT-DR, RAVLT-Ret: 70–80%).
The between-group SV differences of these neurocogni-
tive variables (except for the LNS) were also reliable at
the 95% confidence level (figure 3B). In contrast, the
HC vs ARMS-L classification particularly involved the
trail-making measures, as well as premorbid verbal IQ
(>70%) and to a lesser extent (60–70%) verbal learn-
ing/memory measures. Except for premorbid verbal IQ,
these neurocognitive variables contributed reliably to the
discriminative pattern. Finally, the DST, SOPT, RAVLT-
DR, and RAVLT-Ret measures were selected by >70%
of the SVM models in the ARMS-E vs ARMS-L analysis,
with the most reliable contribution observed in RAVLT-
Ret.

Neurocognitive Analysis of HC vs ARMS-NT vs
ARMS-T Individuals

Univariate Results. After correcting for multiple com-
parisons, the significant performance differences found
in theHC vsARMS-NT vsARMS-T analysis overlapped
with the HC vs ARMS comparison, except for the
RAVLT-DR (table 4). Compared with HC, both
ARMS-NT and ARMS-T individuals had significant
performance deficits across the TMT-B, TMT-(B"A),
SOPT, and RAVLT-IR but they did not differ from
each other in these measures (table 4).

SVMClassificationAnalysis. The 3-group classification
accuracy was 87.7% (table 6; figure 1C, right). One HC
was misclassified as ARMS-NT (HC vs rest: sensitivity =
96.7%, specificity = 85.7%, and BAC = 90.8%). Three
ARMS-NT were wrongly assigned to the HC and 1 to
the ARMS-T group (ARMS-NT vs rest: 80.0%, 95.6%,
and 90.8%). Two ARMS-T were mislabeled as HC and
1 as ARMS-NT (ARMS-T vs rest: 80%, 98%, 89%).
The binary HC vs ARMS-T classifier attained the highest
performance (BAC, sensitivity, and specificity: 93.3%,
86.7%, and 100%), followed by HC vs ARMS-NT
(86.7%, 80.0%, and 93.3%) and ARMS-NT vs ARMS-
T (77.5%, 80%, and 75%) (table 5; figure 1B, right).
The discriminative pattern of HC vs ARMS-NT (fig-

ure 2C) was similar to the HC vs ARMS-E profile and
showed high selection probabilities (>80%) in the working
memory and delayed verbal learning domain (LNS, SOPT,
RAVLT-DR), which were reliable for the SOPT and
RAVLT-DR measures (figure 3C). The HC vs ARMS-T
pattern was characterized by frequently selected executive
and working memory measures (digit span, TMT-B,

Fig. 3. Discriminative neurocognitive profiles of the three
classification experiments. The support-vector machine (SVM)
results of our study were obtained based on complex and subtle
patterns of neurocognitive between-group differences that are
difficult to visualize due to the nonlinearity of the classification
method. Therefore, these nonlinear discriminative neurocognitive
patterns were approximated (1) by computing the difference vector
between the scaled (0,1) and adjusted (age, gender) neurocognitive
features of all nearest-neighbor support-vector pairs that
constituted the optimal separating decision boundary of a SVM
model, trained on a given inner cross-validation (CV1) training
sample and (2) by calculating the arithmetic mean and SE of the
mean for these difference vectors obtained across all CV1 training
samples in each of three classification experiments: A: healthy

controls (HC) vs at-risk mental states (ARMS), B: HC vs ARMS-E
vs ARMS-L, C: HC vs ARMS-NT vs ARMS-T. Zero-crossings of
SEs indicate unreliable between-group differences.
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TMT-(B"A), verbal fluency: >75% models). Reliable be-
tween-group SV differences were found in cognitive flexibil-
ity, visual working memory, and verbal learning abilities
(TMT-B, TMT-[B"A], SOPT, and RAVLT).

Finally, the discriminative ARMS-NT vs ARMS-T
pattern particularly involved verbal and executive
functions, as measured by the MWT-B, DST, TMT-
B, RAVLT-DR, and RAVLT-Ret (>60% of the
classification models included these measures). The
cognitive flexibility and delayed verbal learning meas-
ures were reliable at the 95% confidence interval. Bal-
anced classification accuracy dropped 2%–7% when
one of these neurocognitive variables was removed
from the test battery (see figure 1 and table 3 in online
supplementary material).

Discussion

To our knowledge, this is the first study to assess the fea-
sibility of an individualized early recognition of different
ARMS and a prediction of disease transition by analyz-
ing neurocognitive data using state-of-the-art machine-
learning techniques. These data were acquired from
a neuroleptic-naı̈ve at-risk population recruited using
operationalized high-risk criteria that were previously
employed to study neurobiological and neurocognitive
correlates of the ARMS for psychosis.9,22,23,27–34,55 Fur-
thermore, the transition rate of 42.9% in our follow-up
cases indicates that the ARMS individuals’ risk for tran-
sition to psychosis lies within the range of previous UHR
studies, eg, the initial findings from the PACE clinic
in Australia,37,38 the earlyTreatment of Pre-Psychosis
clinic in Norway,56 the Swiss FEPSY study,16 or the
North American Prodrome Longitudinal Study.17,18,57

We could demonstrate that a neurocognition-based
classification system may achieve high diagnostic accura-
cies in (1) distinguishing unseen ARMS fromHC, (2) rec-
ognizing their level of vulnerability, as defined by the
operationalized ARMS-E and ARMS-L criteria, and
(3) predicting their subsequent outcome regarding tran-
sition or nontransition to psychosis over 4 years. Fur-
thermore, the repeated nested CV framework provided
an unbiased estimate of classification generalizability
to new, unseen cases. Hence, the observation of overall
high cross-validated classification accuracies in the 3
SVM experiments may support that the underlying neu-
rocognitive patterns indeed represent distinct and homo-
geneous neurocognitive signatures of the ARMS and the
emerging illness. Therefore, these signatures may be
interpreted as neurocognitive markers that allow for a re-
liable early recognition of the ARMS and the prodromal
phase of psychosis at the individual level.

Neurocognitive Markers of ARMS-E and ARMS-L

The (visual) workingmemory and verbal learning domains
were particularly involved in the discriminative pattern

underlying the high classification accuracy (96%) of
ARMS-E vs HC individuals (table 5). This observation
partly overlaps with reports of verbal memory alterations
in at-risk populations characterized by predictive basic
symptoms.7,9,11 However, these investigations did not
find deficits in the (visual) working memory domain
(SOPT, LNS) to be associated with an ‘‘early’’ ARMS
for psychosis. Furthermore, Simon et al55 did not detect
any significant neurocognitive differences in at-risk indi-
viduals recruited for basic symptoms compared with
help-seeking patient controls. These inconsistencies may
be attributed to differences in statistical power and
employed methodology.58 Nevertheless, our binary classi-
fication results suggest that a pattern of altered verbal and
mnemonic functions may reliably distinguish at-risk indi-
viduals experiencing predictive basic symptoms11,28 from
healthy volunteers on a single-subject basis.
Compared with this pattern, the neurocognitive signa-

ture used by the HC vs ARMS-L classifier relied strongly
on premorbid verbal IQ, processing speed, cognitive set
shifting, and to a lesser degree verbal learning abilities.
This pattern facilitated a cross-validated BAC of 88%
in the classification of HC vs ARMS-L individuals.
The pronounced involvement of executive functioning
in this discriminative profile agrees with previous neuro-
psychological studies of UHR subjects.2,8,9,14,59,60 Fur-
thermore, in keeping with our findings, premorbid
verbal IQ,5,55 processing speed,9,60 and verbal learning
impairments5,9,55 have been shown to characterize the
UHR for psychosis, albeit not as a consistent deficiency
pattern throughout the literature. Again, this heterogene-
ity may be due to differences in sample characteristics,
employed neuropsychological measures, and statistical
strategies across these studies.58 In this regard, it is note-
worthy that the neurocognitive profile of the ARMS-L
obtained using univariate statistical procedures (table
4) differs from the discriminative patterns detected by
our multivariate methodology. This discrepancy reflects
the SVM’s ability to perform multivariate prediction,
meaning that the algorithm analyzes the relationships
of different cognitive features with respect to the conjoint
discriminative power they provide. Thus, single predic-
tive features may be redundant when combined into a dis-
criminative profile. In contrast, features that appear to be
irrelevant may aid in reliably separating the groups within
a high-dimensional nonlinear discriminative space.
This phenomenon was particularly observed in the

ARMS-E vs ARMS-L analysis, where univariate meth-
ods did not reveal any significant differences. However,
the binary SVM classifier was able to separate unseen
ARMS-E and ARMS-L with a BAC of 75% by relying
on a discriminative pattern that involved premorbid ver-
bal IQ, processing speed, visual working memory, and
delayed verbal learning. This discriminative pattern is
in keeping with existing studies that showed that these
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neurocognitive domains are more impaired in ARMS-L
vs ARMS-E individuals.7,9,55

In summary, our binary and multigroup classification
results (table 6) suggest that an early recognition of
ARMS individuals may be feasible on a single-subject ba-
sis. If replicated in larger, independent populations, these
findings could support the diagnostic application of neu-
rocognitive pattern classification in the early stages of
psychosis development. These at-risk states are likely
to be more amenable to therapeutic intervention than
the established disorder, but at the same time, they elude
clinical detection due to the absence of frank psychotic
symptoms.
In this regard, prospective studies are needed to trace

neurocognitive deficits from the initial prodrome to the
first-episode of the disease in order to evaluate whether
the discriminative profiles of the ARMS-E and ARMS-L
evolve on a single disease trajectory, or alternatively,
whether they represent 2 distinct vulnerability states of
psychosis, as suggested by the divergent transition rates
in both subgroups (see methods section).

Neurocognitive Markers of Transition to Psychosis

Our second classification analysis demonstrated that
neurocognition-based SVM classifiers may be capable
of predicting whether a subclinical ARMS will evolve
into frank psychosis at the single-subject level. The neu-
rocognitive patterns extracted by the binary classifiers
partly overlapped with the profiles identified in the
HC vs ARMS-E vs ARMS-L analysis. More specifically,
the classification of converters vs nonconverters
achieved a BAC of 77.5% based on a discriminative
pattern, which mainly involved premorbid verbal IQ, ex-
ecutive functions, and (verbal) learning abilities. Further-
more, the multigroup classifier (table 6) separated the
converters/nonconverters from the other study groups
with a BAC of 89%/90.8%, suggesting that larger training
samples and additional neurocognitive information pro-
vided by the HC group facilitated the modeling of the
complex separating boundary between the conversion
and nonconversion samples.
Linear classification models combining clinical with

neurocognitive data have previously shown to improve
disease prediction beyond the levels of purely clinical rec-
ognition strategies. In the study of Lencz et al,5 the
authors found that regression models using verbal mem-
ory performance and positive symptom severity achieved
an accuracy of 80% in distinguishing subsequent convert-
ers from the nonconverters. Similarly, Riecher-Rössler
et al16 found that logistic regression integrating
suspiciousness and anhedonia scores with executive
functioning correctly predicted transition in 80% of the
cases. However, none of these studies estimated the
generalizability of prediction using a rigorous CV proce-
dure that separated the training from the validation data

at all steps of the model creation process. Moreover,
a recent multicenter study,17 which involved a total of
269 clinical high-risk subjects with follow-up information
and 193 HC, did not find neurocognitive data to provide
predictive power beyond clinical prediction models.18

In the context of these conflicting findings, our results
suggest that multivariate machine learning methods may
be capable of extracting those discriminative patterns
from cross-domain neuropsychological test batteries
that indeed facilitate a reliable prediction of psychosis
in unseen ARMS individuals. It is of note that our mul-
tigroup classification system outperformed (89%) the
PACE-based UHR criteria in predicting psychosis as
14 of 21 followed ARMS-L subjects (66.7%), which
were recruited using these criteria, subsequently devel-
oped the disease. However, we have to point out that
our classification results were obtained in a clinically de-
fined high-risk population and hence cannot be general-
ized to asymptomatic individuals at-risk for psychosis
due to eg, genetic reasons. Furthermore, it is unknown
how the SVM method would perform in ARMS samples
with lower conversion rates, as reported recently.61

In keeping with Lencz et al5 and Riecher-Rössler
et al,16 our findings support that neurocognitive pattern
recognition may substantially enhance the diagnostic re-
liability of existing clinical early recognition strate-
gies.18,28,38 Furthermore, the higher PANSS negative
scores observed in the conversion vs the nonconversion
group (table 3) as well as the correlation between PANSS
negative scores and RAVLT-DR (jrj=:56) as well as
RAVLT-Ret (jrj=:56) suggests an association between
prodromal negative symptoms and cognitive deficits.
In this regard, multimodal diagnostic applications com-
bining psychopathological and neurocognitive data may
outperform classifiers relying only on neurocognitive in-
formation.5,16 However, these multimodal diagnostic sys-
tems would essentially depend on skilled clinicians
trained to reliably detect subtle prodromal symptoms
across individuals and over time, which may confine
such systems to highly specialized clinical centers.
Our current and previous results22 suggest that neuro-

cognitive and neuroanatomical pattern classificationmay
achieve equivalent prediction results. This is important
because the applicability and availability of MRI-based
procedures in clinical real-world scenarios may be limited
due to concomitant psychiatric, medical, and economic
conditions. Furthermore, the similar classification accu-
racies obtained by neurocognition- and MRI-based pat-
tern classification may point to a link between structural
brain alterations22,23,30,31,36,62–64 and neurocognitive ab-
normalities in the ARMS. To date, these potential asso-
ciations have been assessed only by 2 studies that found
correlations between hippocampal volume and verbal
learning deficits34 as well as between prefronto-callosal
volumes and executive impairment.42 Therefore, further
research is needed to evaluate the performance of
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multimodal classifiers that integrate both neuroanatom-
ical and neurocognitive data.

Finally, 2 further limitations have to be considered. Al-
though the repeated double CV framework provided a re-
liable estimate of classification generalizability, we
cannot rule out that the classification accuracies observed
in our analyses may be due an accidental recruitment of
an easy to categorize ARMS population. This possibility
could be precluded in future multicenter studies that re-
cruit and follow significantly larger samples of ARMS
individuals. Furthermore, the encouraging results of
our classification analyses do not imply that similar levels
of specificity and sensitivity in predicting psychosis could
be achieved in individuals presenting with ARMS-like
symptoms in a normal clinical setting. This is because
the classifiers were not trained to detect other psychiatric
conditions like depression, bipolar disorder, or border-
line personality disorder that may present with overlap-
ping clinical and neurocognitive abnormalities. In this
regard, the ARMS-NT group’s clinical outcome involved
affective spectrum diagnoses, such as major depression,
bipolar, and adjustment disorder, possibly pointing to
a specificity of the neurocognitive patterns in separating
schizophrenia spectrum psychosis from affective disor-
ders. This important issue should be further examined
in transnosological ARMS cohorts that cover ARMS
for different psychiatric disorders.
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