
Chapter 21
Structural MRI: Morphometry

Christian Gaser

Abstract Human brains are characterised by considerable intersubject anatomical
variability, which is of interest in both clinical practice and research. Computational
morphometry of magnetic resonance images has emerged as the method of choice
for studying macroscopic changes in brain structure. Magnetic resonance imaging
not only allows the acquisition of images of the entire brain in vivo but also the
tracking of changes over time using repeated measurements, while computational
morphometry enables the automated analysis of subtle changes in brain structure. In
this section, several voxel-based morphometric methods for the automated analysis
of brain images are presented. In the first part, some basic principles and techniques
are introduced, while deformation- and voxel-based morphometry are discussed in
the second part.

21.1 Introduction

The Jena psychiatrist Hans Berger became famous for the discovery of electroen-
cephalography. Less known, however, are Berger’s imaginative studies of brain
morphometry. He tried, for example, to estimate the cortical surface by gluing small
metal plates onto a post-mortem brain. Since the area and weight of a single metal
plate were known, the total weight of the plates was used in order to estimate the
total area of the cortex. Nowadays, computer-based methods use the same idea with
so-called triangulation. However, now the metal plates are replaced by small tri-
angles forming a computerised mesh that renders the shape of the cortical surface
and allows a reliable and accurate measurement. This new approach belongs to the
recently developed methods for the automated analysis of brain structure that are
referred to as ‘computational morphometry’ (Takao et al. 2010).
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Besides the use of computer algorithms, the availability of new imaging methods
played a seminal role in morphometry. These new imaging methods not only allow
the acquisition of images of the entire brain in vivo but also the tracking of changes
over time using repeated measurements. Thus, they represented a real advance
because previously post-mortem examinations were the only way to examine brain
structures.

The first imaging method that allowed mapping of cerebral structures in vivo
was pneumoencephalography. This procedure involved drainage of most of the
cerebrospinal fluid (CSF) from around the brain and replacement with air. The
ventricular system of the brain could then be identified on an X-ray of the skull.
However, this method proved to be very invasive and painful. It took until the70s of
the last century before computed tomography provided images of the brain in three
dimensions. The real breakthrough in imaging techniques, however, came with
magnetic resonance imaging (MRI), which allowed a much higher spatial resolution
without ionising radiation. This method has become the standard tool of macro-
scopic anatomy, both in clinical practice and in research. Another advantage of this
imaging method is that variable image contrasts can be achieved by using different
parameters for longitudinal (T1) and transverse (T2) relaxation times and proton
density. The signal intensities on T1, T2 and proton density relate here to specific
tissue contrasts. The most commonly used imaging sequence for MR-morphometry
is T1-weighted imaging because of its high contrast for brain parenchyma (see
Fig. 21.1). Other imaging sequences can be used to evaluate CSF spaces, oedema
or subacute stroke (T2 weighted), to enhance parenchymal abnormalities, such as
low-grade glioma (fluid-attenuated inversion recovery [FLAIR]), or to visualise
acute ischaemia (diffusion weighted).

In addition to the various methodological developments, morphometry has
gained increasing importance in the field of neuroscience because completely new
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Fig. 21.1 T1-weighted MRI
scan. The small image (top
right) shows the location of
the axial slice (main image).
This sequence reveals a high
contrast for brain parenchyma
and the different signal
intensities relate to grey and
white matter and
cerebrospinal fluid
(CSF) [modified from (Gaser
2005)]
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applications have become possible. While in the early days the applications were
limited to the quantification of global parameters such as brain weight or brain
volume, nowadays a wide spectrum of applications is supported. This ranges from
the investigation of local morphometric changes in certain diseases up to the
detection of brain plasticity.

In this chapter, two different morphometric methods for the analysis of MR
images of the brain are presented. In the first part, some basic principles and
techniques are introduced, while two morphometric methods are discussed in the
second part that both work on a voxel-wise level.

21.2 Basic Principles

21.2.1 Spatial Normalisation

Brains are characterised by considerable intersubject anatomical variability. In order
to analyse brains across different subjects, an adjustment to a reference system
using a stereotactic or spatial normalisation is required. This permits the analysis of
brains in a standardised space or coordinate system. However, this procedure is also
useful for brain morphometry and consequently a variety of methods based on this
idea exists.

In order to spatially normalise brain images, it is first necessary to define a
standardised coordinate system by using specific anatomical landmarks. The most
widely used reference system is the Talairach atlas proposed by Talairach and
Tournoux (1988). The basic idea is to define the anterior and posterior commissures
and several points relative to them to align and scale a brain image. The anterior
commissure is the origin of the coordinate system and all locations within the brain
can now be defined with standardised coordinates in millimetres (Fig. 21.2). This
allows the comparison of anatomical localisations between different brains and even
different studies.

The adjustment due to spatial registration can be achieved in different ways
(Fig. 21.3). The simplest procedure is to only correct the position of the images, for
which displacements and rotations are applied. The image size (or brain size)
remains unchanged, which is necessary, for example, for brain images of the same
subject, in longitudinal (serial) measurements over time. Since image size is not
changed, this special case is also referred to as ‘rigid body transformation’. In
contrast, images of different subjects need to be additionally corrected for image
size by scaling or resizing the image. Furthermore, for a full affine transformation,
an additional shearing of the image can be applied (Fig. 21.3). Since the adjustment
is done for the entire image in the same way (or linearly), the term ‘linear spatial
normalisation’ is used.

In contrast to linear normalisation, nonlinear normalisation also corrects for local
differences between two brains. For this, images are locally warped (deformed)
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Fig. 21.2 Talairach coordinate system. The coordinate origin of the Talairach space is defined by
the anterior commissure (CA). From here, all locations in the brain can be specified as coordinates
in millimetres. The line through the anterior and posterior (CP) commissures is used for aligning
the coordinate system. The image shows the extent in the y-direction (anterior-posterior) and
z-direction (inferior-superior). The x-axis (not shown here) determines the left-right direction
[modified from (Gaser 2005)]
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Linear (affine) normalisation Non-linear normalisation 

Fig. 21.3 Linear and nonlinear spatial registration. The left side of the figure shows the four
possible linear transformations that are applied to the entire image. A special case is the so-called
rigid body transformation. Here, the image is adjusted only by translations and rotations. An
additional change in image size can be achieved by scaling and shearing the image. The
aggregation of these linear transformations is known as ‘affine normalisation’. In contrast to linear
normalisation, nonlinear normalisation also corrects for local differences between two brains (right
side of the figure). For this, images are locally warped (deformed) until the differences between
them are minimised (modified from (Gaser 2005))
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until the differences between them are minimised (Fig. 21.3). The cost of com-
puting such local deformations is much higher and increases with the required
spatial resolution of the deformations. The advantage of nonlinear normalisation,
however, is the greater accurate adjustment of the brains to the reference brain.

Linear and nonlinear normalisation can be performed using different normali-
sation algorithms [a detailed overview is given in (Toga 1999)]. Landmark-based
methods use manual label points (landmarks) in the brain. These corresponding
points are defined in all brains and are then aligned. Contour-based methods use not
just a few points or landmarks but the whole contour of a region, such as the outline
of the corpus callosum in the sagittal plane or even the entire surface of the cortex
as a three-dimensional contour (Thompson et al. 1997). Finally, intensity-based
methods exist which use the local image intensity in order to achieve a spatial
alignment between the images. Here, the squared sum of the signal intensity dif-
ferences is used, for example, as an indicator of the similarity between two images.
By minimising these intensity differences, an alignment of both images is achieved.

21.2.2 Segmentation

Segmentation algorithms are among the most commonly used methods in brain
morphometry. The aim of these methods is to segment an image into separate
anatomical tissue compartments, such as grey matter, white matter and CSF, after
removing non-brain parts. With more sophisticated approaches, it is also possible to
segment pathological changes, such as tumours, lesions or stroke-affected regions.
However, in addition to the T1 images, this usually requires MR sequences, such as
T2 weighting or FLAIR, where the pathological changes can be better differentiated.

A plethora of semi-automated and automated algorithms exists, such as intensity
thresholding, region growing, classifiers, clustering, Markov random field models,
artificial neural networks, deformable models or atlas-guided approaches (Pham
et al. 2000). From all of these examples, one of the most commonly used methods
will be presented here in detail: the Gaussian mixture model, which belongs to the
group of classifiers (Ashburner and Friston 2005). First, an intensity histogram of
the image is estimated that plots the frequencies of the image intensities on the
y-axis (Fig. 21.4, bottom left). The simplified example in Fig. 21.4 shows only four
different intensity distributions. Here, the smallest image intensities are assigned to
the background (left part of the histogram), followed by CSF, grey and white matter
with the highest image intensity in the right part of the histogram. Gaussian curves
that can differ with regard to height and width are now fitted into this intensity
distribution. The maximum of each of these four Gaussian curves represents the
mean intensity value for the respective tissue compartment. For the example of grey
matter, this means that at the peak maximum the probability that this image voxel
belongs to grey matter is largest. The more the image intensity deviates from this
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value, the less likely it is grey matter and is rather CSF (at lower intensity) or white
matter (with higher intensity).

The intensity distributions for each tissue compartment overlap because at a
common voxel size of 1 × 1 × 1 mm3 any given voxel might contain more than
one tissue. This is referred to as ‘partial volume effect’ and most often occurs at the
border between brain parenchyma and CSF, at boundaries between grey and white
matter, and in structures where white matter fibres cross the grey matter. These
partial volume effects can be modelled explicitly in order to estimate a more
accurate segmentation (Tohka et al. 2004).

To guide tissue segmentation, additional tissue probability maps can be used to
consider prior anatomical knowledge about the spatial distribution of different
tissues (Ashburner and Friston 2005). Image intensity and prior knowledge can then
be combined via a Bayes estimator. In fact, prior anatomical knowledge is used to
drive and restrict the tissue segmentation algorithm (Fig. 21.4, right). While this
may be valuable as long as the prior probability maps match the subject’s tissue
distribution, it might lower segmentation accuracy in all populations that deviate
from these maps (e.g. children, Alzheimer’s disease patients) (Wilke et al. 2008).
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Fig. 21.4 Image segmentation using a priori information. First, the image intensities of the T1
image (upper left) are used to plot their frequencies in a histogram. Several peaks—corresponding
to different image intensities of the tissue compartments—can be differentiated. In the next step,
Gaussian mixture curves for each tissue compartment are fitted into the histogram in order to
estimate the probability that a voxel belongs to that tissue (lower left). A map for grey matter is
shown (upper right) with the estimated probability for two selected locations (red circles). Based
solely on a similar image intensity, the cerebral and extracranial circles exhibit a similar probability
for belonging to grey matter. This can be adjusted by combining the image intensity-based
information with prior information (below) using a Bayesian approach [modified from (Gaser
2005)]
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21.3 Voxel-Based Methods

Voxel-based methods allow the analysis of each voxel in the MR data. This
voxel-wise analysis is possible because all brains are adjusted by means of a spatial
normalisation to a standard anatomical space. Thus, each voxel relates to the same
corresponding anatomical structure across all brains, which can be assumed if a
high-dimensional nonlinear spatial normalisation is applied.

While different voxel-wise measures can be used for that approach, the most
common approach is to segment brains into different tissue compartments and
analyse the local distribution for a specific tissue. This method is referred to as
‘voxel-based morphometry.’ Another approach is to analyse the deformations that
are necessary in order to non-rigid deform a brain to adapt it to another brain.
Because this approach is based on deformations, it is known as ‘deformation-based
morphometry.’

Prior to statistical analysis, the images have to be spatially smoothed (filtered)
with a Gaussian kernel. The reason for this is threefold. First, parametric tests
assume that the data follow a Gaussian distribution and after smoothing with a
Gaussian kernel the data are more normally distributed according to the central limit
theorem (Nichols and Hayasaka 2003). Second, smoothing accounts for small
interindividual differences in local brain anatomy that remain after spatial nor-
malisation. Finally, smoothing enables greater sensitivity for effects that approxi-
mately match the size of the smoothing kernel according to the matched filter
theorem (Ashburner and Friston 2000).

In the next step, smoothed images can then be compared in each voxel
(Fig. 21.5). For statistical analysis, usually a general linear model is used. This
model—the equivalent of a multiple regression—incorporates a number of different
statistical models ranging from simple correlation to repeated measures ANOVA in
longitudinal designs. The result is a statistical parametric map, which allows a
statistical statement about the initial hypothesis in each voxel. However, due to the
mass-univariate approach, a correction for multiple comparisons has to be applied.
The most frequently used correction is based on the Gaussian random field theory
(Worsley et al. 1996) that enables a correction on the voxel or cluster level
(although a correction on the more theoretical set level is also possible) (Friston
et al. 1996). Another option for the consideration of the issue of multiple com-
parisons has become very popular in recent years. This method is based on the
adaptive control of the false discovery rate (FDR) and was originally proposed for
microarray data to identify genetic effects (Benjamini and Hochberg 1995). Finally,
permutation tests do not assume normally distributed data and enable a correction
for multiple comparisons particularly for small sample sizes. They use random
shuffles of the data to attain a correct distribution of a test under a null hypothesis
(Nichols and Holmes 2002). Again, a correction on the voxel or cluster level is
possible. Another possibility is to use a correction based on threshold-free cluster
enhancement (TFCE) that combines both levels by accumulating cluster-like local
spatial support at a range of cluster-forming thresholds (Smith and Nichols 2009).
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Since the analysis is made on a voxel-wise level, this approach offers several
advantages over conventional morphometry. One such advantage is the reduction of
partial volume effects, since a structural change can be detected in each voxel of the
brain and not only in the entire structure. Thus, structures that are only partially
altered can be detected with higher sensitivity compared to region-based methods.
Furthermore, an analysis can not only be carried out in predefined regions but also
throughout the brain. Large sample numbers can be examined with high reliability
due to the automated measurement. These advantages might explain the great
popularity of these methods in recent times.

21.3.1 Deformation-Based Morphometry (DBM)

DBM is based on the application of nonlinear registration procedures to spatially
normalise one brain to another one. The simplest case of spatial normalisation is to
correct the orientation and size of the brains. In addition to these global changes, a
nonlinear normalisation is necessary to minimise the remaining regional differences
by means of local deformations. If this local adaptation is possible, the deforma-
tions now reveal information about the type and localisation of the structural dif-
ferences between the brains and can undergo subsequent analysis (Fig. 21.6).

General linear 
model

Reference 
brain 

Individual 
brains 

Individual voxel-
wise measurements 

Statistical
parametric map . . . . . . 

Fig. 21.5 Principle of a voxel-based analysis. For a voxel-wise analysis, it is first necessary to
spatially register all brains to a reference brain. Now, in each voxel a morphometric parameter (e.g.
grey matter volume) is estimated that can be statistically analysed using a general linear model.
The result is a statistical parametric map which allows a statistical statement about the initial
hypothesis in each voxel [modified from (Gaser 2005)]
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Figure 21.6 shows an example for a single patient with schizophrenia. A first
baseline scan was acquired at the beginning of his first psychotic episode and a
subsequent scan was acquired after 7 months where the enlarged ventricles are
visible with the naked eye. The second image is warped to the baseline scan by
introducing high-dimensional deformations. Differences between both images are
minimised and are now coded in the deformations. Finally, a map of local volume
changes can be quantified by a mathematical property of these deformations–the
Jacobian determinant. This parameter is well known from continuum mechanics
and is usually used for the analysis of volume changes in flowing liquids or gases.
The Jacobian determinant allows a direct estimation of the percentage change in
volume in each voxel and can be statistically analysed (Gaser et al. 2001). This

Baseline After 7 months Jacobian determinant 
(volume changes) 

Zoom Zoom 

Fig. 21.6 Principle of DBM. Left This example shows two T1 images of a male patient with
schizophrenia at his first episode and a subsequent scan after 7 months. In the enlarged views
shown underneath, the larger lateral ventricles at the second time point can be clearly seen. The
principle of DBM is to warp the second scan to the baseline scan by introducing high-dimensional
deformations. Once this is achieved, the differences between both images are encoded in the
deformations applied for the warp. These deformations can then be used to calculate volume
changes by using the Jacobian determinant (right images) [modified from (Mietchen and Gaser
2009)]
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approach is also known as ‘tensor-based morphometry’ because the Jacobian
determinant represents such a tensor.

A deformation-based analysis can be carried out not only on the local changes in
volume but also on the entire information of the deformations, which also includes
the direction and strength of the local deformations (Gaser et al. 1999). Since each
voxel contains three-dimensional information, a multivariate statistical test is nec-
essary for analysis. A multivariate general linear model or Hotelling’s T2 test is
commonly used for this type of analysis (Gaser et al. 1999; Thompson et al. 1997).

The principle of DBM can be applied to both cross-sectional and longitudinal
data. In a cross-sectional design, typically brain images of two groups are warped to
a reference image. Thereafter, the different deformations to the reference image
between the two groups can be compared. On the other hand, longitudinal data
comprise measurements of the same subject at different time points. Here, the idea
of DBM is slightly modified. Now, the baseline image at the first time point serves
as a reference image. All subsequent images of a subject are warped to this baseline
image and the individual changes over time can be obtained. This allows the
tracking of subtle changes over time, which cannot be detected by conventional
morphometry.

21.3.2 Voxel-Based Morphometry (VBM)

VBM provides the voxel-wise estimation of the local amount or volume of a
specific tissue compartment (Ashburner and Friston 2000). VBM is most often
applied to investigate the local distribution of grey matter, but can also be used to
examine white matter. However, the sensitivity for detecting effects in white matter
is limited due to the low intensity contrast in large homogeneous white matter
regions with only small changes in intensity. The concept of VBM incorporates
different preprocessing steps: (1) spatial normalisation to a reference brain (tem-
plate), (2) tissue classification (segmentation) into grey and white matter and CSF
and (3) bias correction of intensity non-uniformities. Ashburner and Friston (2005)
proposed an approach whereby all three steps are combined within the same gen-
erative model. This model is based on a mixture of Gaussians and additionally
considers smooth intensity variations and nonlinear registration using tissue seg-
mentations. This approach allows for more accurate and reliable results than simple
serial applications of each single step.

Further improvement can be achieved if high-dimensional spatial registration
techniques such as diffeomorphic registration approaches are used. Diffeomorphic
registrations are based on a large-deformation framework and not only provide a
number of elegant mathematical properties but generally allow for a better accuracy
of the spatial registration (Ashburner 2007).

Local deformations are now used in order to reduce structural differences between
original and template images. This facilitates a precise comparison within brain
regions between different subjects. However, existing structural differences between
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the brains are now largely reduced and the sensitivity for detecting these effects in
the statistical analysis is therefore minimised. Thus, the volume of a particular tissue
within a voxel has to be preserved. This is attained by multiplying (or modulating)
voxel values in the segmented images by the Jacobian determinants that are derived
from the spatial registrations. This process is referred to as ‘modulation.’
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