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A B S T R A C T

Background: Prenatal exposure to undernutrition is widespread in both developing and industrialized countries,
causing irreversible damage to the developing brain, resulting in altered brain structure and decreased cognitive
function during adulthood. The Dutch famine in 1944/45 was a humanitarian disaster, now enabling studies of
the effects of prenatal undernutrition during gestation on brain aging in late adulthood.
Methods: We hypothesized that study participants prenatally exposed to maternal nutrient restriction (MNR)
would demonstrate altered brain structure resembling premature brain aging in late adulthood, expecting the
effect being stronger in men. Utilizing the Dutch famine birth cohort (n ¼ 118; mean age: 67.5 � 0.9 years), this
study implements an innovative biomarker for individual brain aging, using structural neuroimaging. BrainAGE
was calculated using state-of-the-art pattern recognition methods, trained on an independent healthy reference
sample, then applied to the Dutch famine MRI sample, to evaluate the effects of prenatal undernutrition during
early gestation on individual brain aging in late adulthood.
Results: Exposure to famine in early gestation was associated with BrainAGE scores indicative of an older-
appearing brain in the male sample (mean difference to subjects born before famine: 4.3 years, p < 0.05).
Furthermore, in explaining the observed variance in individual BrainAGE scores in the male sample, maternal age
at birth, head circumference at birth, medical treatment of hypertension, history of cerebral incidences, actual
heart rate, and current alcohol intake emerged to be the most influential variables (adjusted R2 ¼ 0.63, p < 0.01).
Interpretation: The findings of our study on exposure to prenatal undernutrition being associated with a status of
premature brain aging during late adulthood, as well as individual brain structure being shaped by birth- and late-
life health characteristics, are strongly supporting the critical importance of sufficient nutrient supply during
pregnancy. Interestingly, the status of premature brain aging in participants exposed to the Dutch famine during
early gestation occurred in the absence of fetal growth restriction at birth as well as vascular pathology in late-life.
Additionally, the neuroimaging brain aging biomarker presented in this study will further enable tracking effects
of environmental influences or (preventive) treatments on individual brain maturation and aging in epidemio-
logical and clinical studies.
1. Introduction

Increasing evidence from epidemiological studies as well as experi-
mental animal models proves the significant impact of the intrauterine
environment on the general lifespan, individual ageing trajectories,
lifelong health, and disease outcomes (Rando and Simmons, 2015;
g Group, Department of Neurolog
nke).
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Tarry-Adkins and Ozanne, 2014). More specifically, exposure to maternal
nutrient restriction (MNR) during prenatal development has been asso-
ciated with altered brain structure, developmental delays during child-
hood, impairments in life-long learning, cognitive deficits, behavioral
and psychiatric disorders, as well as later-life neurodegenerative disor-
ders (de Rooij et al., 2010; Faa et al., 2014; Raznahan et al., 2012).
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Several studies in a translational nonhuman primate baboon model of
moderate MNR (i.e. nutrient reduction of 30%) during pregnancy indi-
cated subtle but widespread disturbances of early organizational pro-
cesses in cerebral development on a histological level, resulting in major
impairments of fetal brain development (Antonow-Schlorke et al., 2011),
and subsequent altered postnatal cognitive and behavioral performances
(Keenan et al., 2013; Rodriguez et al., 2012) in the young MNR offspring.

In the context of the “developmental origins of health and disease”
(DOHaD) paradigm it has been proposed that MNR during gestation
triggers long-lasting influences on the epigenome of the differentiating
cell, thus resulting in changes in organ structure and adaptation of its
metabolism to ensure immediate survival of the fetus (Barnes and
Ozanne, 2011; Lillycrop and Burdge, 2011). The developing brain is
highly dependent on the availability of nutrients and a lack of sufficient
nutrition forms a serious threat to normal brain development (Ramel and
Georgieff, 2014). Furthermore, the accumulation of oxidative stress due
to suboptimal in utero exposure is suggested to consequently lead to
accelerated cellular aging over the life course (Tarry-Adkins and Ozanne,
2014), with long-term (health) outcomes of adverse in utero conditions
seeming to be more prominent in male than female offspring (Aiken and
Ozanne, 2013).

Epidemiologically, MNR during pregnancy and lactation is a world-
wide problem, including insufficient intake of calories and protein as
well as deficiencies in micronutrients (Black et al., 2008), being caused
by a variety of factors, e.g. natural disasters, war, poverty, or cultural
habits like women being the last in the family to eat (Roseboom et al.,
2011). Furthermore, decreased fetal nutrient delivery is also common in
teenage pregnancies (Baker et al., 2009) and pregnancies in women over
35 years of age (Beard et al., 2009), women suffering from severe vom-
iting or dieting during pregnancy (Roseboom et al., 2011), as well as in
multiple pregnancies (Raznahan et al., 2012) and placental insufficiency
(Zhang et al., 2015). Therefore, it is relevant to study the effects of pre-
natal undernutrition due to MNR on the brain and its aging processes as
this may help to further understand the factors and preconditions of
(precocious) brain aging.

The Dutch Famine Birth Cohort Study has been described as an
‘experiment of history’ which provides a unique opportunity to inves-
tigate the effects of prenatal malnutrition on the aging process. During
the winter of 1944–1945, the western part of the Netherlands was
struck by a period of severe food scarcity. The previously and subse-
quently well-nourished Dutch population's daily rations dropped
acutely to as little as 400–800 calories during the five months of famine.
The famine was a humanitarian disaster, but it now offers an oppor-
tunity to study the effects of maternal malnutrition on the offspring's
health and aging processes in later life. Studies in the Dutch famine
birth cohort have already shown that those who were conceived during
the famine – and had thus been undernourished during the earliest
stages of their development – have an increased risk for coronary heart
disease, diabetes, an atherosclerotic lipid profile, altered clotting, and
breast cancer (Roseboom et al., 2006). Additionally, coronary heart
disease also occurred about 3 years earlier (Painter et al., 2006), total
brain volume was decreased in late adulthood (de Rooij et al., 2016),
and cognition may deteriorate faster in comparison to those who had
not been undernourished prenatally (de Rooij et al., 2010). Conse-
quently, those who were conceived during the famine, and thus had
been exposed to MNR during early gestation, appear to age more
quickly in terms of general health as compared to those who had not
been undernourished in utero.

Aging in general aging is driven by the progressive accumulation of
cellular damage throughout life and changes in intercellular communi-
cation, with individual rates of aging being modified by various genetic
and environmental influences (Lopez-Otin et al., 2013; Rando and
Chang, 2012). Brain aging, in particular, is characterized by
region-specific and non-linear patterns of atrophy (Resnick et al., 2003).
To establish preventive measures for age-related brain diseases, it has
become vital to determine and to predict the individual trajectory of
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brain aging (Lopez-Otin et al., 2013; Rando and Chang, 2012). A number
of cell-, tissue- or function-based biomarkers, such as telomere length, the
epigenetic clock, magnetic resonance imaging (MRI) based approaches,
and neurocognitive measures have been developed (for a recent review
see Franke et al., 2017a). These biomarkers are aimed to assess an in-
dividual's biological age, which is shaped by the interaction between
genes, environment and life burden over time, as opposed to the chro-
nological age, which is measured in calendar units. Determination of the
biological brain age would allow to (1) predict individual neurocognitive
performance during different stages of live, (2) identify an individual's
health and risk patterns for age-related diseases, (3) identify protective or
harmful environmental influences on mental health, and (4) apply pre-
ventive and interventional strategies that are tailor-made for certain
biological ages (Bocklandt et al., 2011). Therefore, developing bio-
markers for biological age is enjoying increasing popularity in
neuroscience.

Personalized structural and functional biomarkers of biological brain
aging either identify deviations from pre-established reference curves for
healthy fetal and neonatal neurodevelopment (for a recent review see
Levman and Takahashi, 2016), healthy brain maturation during child-
hood and adolescence (e.g., Brown et al., 2012; Cao et al., 2015; Dos-
enbach et al., 2010; Erus et al., 2015; Franke et al., 2012b; Khundrakpam
et al., 2015; Wang et al., 2014), and healthy brain aging into senescence
(e.g., Ashburner, 2007; Cherubini et al., 2016; Cole et al., 2015; Franke
et al., 2010; Groves et al., 2012; Han et al., 2014; Kandel et al., 2013;
Konukoglu et al., 2013; Liem et al., 2017; Lin et al., 2016; Mwangi et al.,
2013; Neeb et al., 2006; Sabuncu and Van Leemput, 2011; Sabuncu et al.,
2012; Schnack et al., 2016; Steffener et al., 2016; Tian et al., 2016; Wang
and Pham, 2011; Wang et al., 2014), as well as distinguish patients with
brain disorders from healthy controls (Arbabshirani et al., 2017; Cohen
et al., 2011; Gabrieli et al., 2015; Gaser et al., 2013; L€owe et al., 2016;
Varoquaux and Thirion, 2014). At the structural level, most of these
methods are MRI-based and use state-of-the-art machine learning tech-
niques to establish the reference model for a given task and to subse-
quently decode the characteristics of test individuals. At the functional
level, cross-sectional studies in different age cohorts and longitudinal
studies over restricted time ranges have focused on the changing neu-
rocognitive architecture across the lifespan, both in childhood and during
older age (Deary et al., 2013; McAvinue et al., 2012). Regression-based
predictive analyses aim to predict the values of continuous variables,
such as brain volume, and cognitive or neuropsychological characteris-
tics (Cohen et al., 2011; Kandel et al., 2013; Lei et al., 2017). The indi-
vidualized biomarkers of brain development and aging derived from
these regression analyses are valuable and quantifiable parameters that
offer a broad range of implementations, i.e., generating reference curves
for healthy brain maturation and aging, predicting individual brain
development and aging trajectories based on the pre-established refer-
ence curves, and disentangling age-related changes from disease-related
changes in brain structure and function.

Similar to the assessment of “biological age” based on DNA methyl-
ation status, telomere length or allostatic load, establishing magnetic
resonance imaging (MRI)-based biomarkers of brain aging exemplifies an
important new trend in neuroscience in order to provide risk-assessments
and predictions for age-associated neurological and neuropsychiatric
impairments on a single-subject level (Bzdok, 2016). In contrast to uni-
variate analyses, brain-aging biomarkers are capable of detecting and
quantifying subtle and widespread variations in regional brain structure
throughout the whole brain for a given age (e.g., Cole et al., 2017a,
2017b; Franke et al., 2017b; Habes et al., 2016b; Hodgson et al., 2017;
Schnack et al., 2016; Steffener et al., 2016). Deviations from age-typical
atrophy patterns were already shown to be related to mortality (Cole
et al., 2017a), individual health and lifestyle variables and medical drug
use (Franke et al., 2014; Habes et al., 2016b), with advanced brain aging
emerging in traumatic brain injury (Cole et al., 2015), HIV (Cole et al.,
2017b), diabetes (Franke et al., 2013), schizophrenia (Koutsouleris et al.,
2014; Schnack et al., 2016), and predicting the onset of cognitive decline
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(Franke et al., 2012a; Gaser et al., 2013).
The aim of this study was to investigate whether exposure to fetal

undernutrition during early gestation, induced by MNR during the Dutch
famine, has an effect on the personal status of brain aging in late-life.
Utilizing our well-validated MRI-based brain-aging biomarker (Franke
et al., 2010), the age prediction model was trained with an independent
sample of healthy subjects and subsequently applied to the MRI sub-
sample of the Dutch famine birth cohort. Individual BrainAGE scores
were calculated as the difference between the calculated brain age and
the person's chronological age, with BrainAGE scores above zero sug-
gesting precocious/advanced brain aging. We hypothesized that expo-
sure to famine in early gestation is associated with a status of precocious
brain aging in later life, illustrated by increased BrainAGE scores in
participants, who were exposed to the Dutch famine during early gesta-
tion. In line with the sexual dimorphism hypothesis in the DOHaD
paradigm, we expected the effect of MNR on the individual status of brain
aging being stronger in males. Furthermore, the influence of a number of
birth measures and health characteristics in later life on the observed
variance in late-life BrainAGE scores was examined. Additionally, the
relation between BrainAGE and cognitive and neuropsychiatric test
scores was explored.

2. Methods

2.1. The Dutch famine

The Dutch famine was a consequence of a cascade of events that
happened at the end of World War II, with food stocks in the western
cities of The Netherlands that ran out rapidly and rations that fell below
1000 calories per person on November 26th, 1944. The amount of
protein, carbohydrate, and fat decreased more or less proportionately.
The rations varied between about 400 and 800 calories from December
1944 to April 1945, and rose above 1000 calories again after May 12th,
1945. In addition to the official rations, food also came from other
sources (e.g., church organizations, central kitchens, and the black
market). People may have had access up to double the rationed amount
at the peak of the famine, but the rations do adequately reflect the
variation in food availability over time. Children younger than 1 year of
age were relatively protected, as their rations never fell below 1000
calories. Before the famine pregnant women received extra rations, but
during the famine these extra supplies were no longer available (de
Rooij et al., 2010).

2.2. The Dutch famine birth cohort

The Dutch famine birth cohort comprises 2414 men and women
who were born as term singletons during the period 1 November 1943
and 28 February 1947 in the Wilhelmina Gasthuis in Amsterdam, the
Netherlands. People were included in the cohort if they were born
alive as a singleton after pregnancy duration of at least 259 days and if
a medical birth record could be retrieved. Preterm babies were thus
excluded. A total of 1527 persons were included in the cohort at the
start of the general Dutch famine birth cohort study in 1995. The
current MRI study was aimed at investigating aging outcomes in 150
cohort members, which would provide enough statistical power to
detect meaningful differences in a variety of aging outcomes. The se-
lection procedure of the cohort has been described in detail elsewhere
(de Rooij and Roseboom, 2013). At the start of the MRI study in 2012,
1307 (54%) cohort members were eligible. They were alive, still living
in the Netherlands, and their current address was known to the in-
vestigators. Birth weight and head circumference at birth did not differ
between these eligible and non-eligible cohort members (3357 vs.
3333 g, p ¼ 0.22; 32.8 vs. 32.9 cm, p ¼ 0.22). The study was approved
by the local medical ethics committee and carried out in accordance
with the Declaration of Helsinki. All participants gave written
informed consent.
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2.3. Experimental design

The official daily food-rations for the general population of 21 years
and older were used to define exposure to famine. A person was
considered prenatally exposed to famine if the average daily food-ration
of the mother during any 13-week period of gestation contained less than
1000 calories. Based on this definition, babies born between 7 January
1945 and 8 December 1945 had been exposed in utero. In correspondence
with previous publications on this cohort, we delineated periods of 16
weeks each to differentiate between those exposed in late gestation (born
between 7 January and 28 April 1945), in mid gestation (born between
29 April and 18 August 1945) and in early gestation (born between 19
August and 8 December 1945). People born before 7 January 1945 and
people conceived after 8 December 1945 were considered as unexposed
to famine in utero and acted as control groups. As the effect of famine
exposure on congenital anomalies of the CNS affected only those exposed
during early gestation and the majority of effects of prenatal famine
exposure on later life health which we have previously shown occurred in
those who were exposed in early gestation, we focused the current study
on this group and did not include those exposed to famine in late or mid
gestation (Roseboom et al., 2011; Stein et al., 1975).

2.4. Sample selection

For the 2012 study consisting of a home visit and a MRI session in the
hospital, we aimed to include a total of 150 people: 50 of those born
before the famine, 50 of those exposed to famine in early gestation and
50 of those conceived after the famine. We randomly drew equal samples
from each of the groups until the number of 50 people agreeing to
participate was reached. A total number of 151 participants of an eligible
group of 268 cohort members (56%) were visited at home. Participation
rates were similar in the born before famine and exposed in early
gestation groups (54% vs. 51%) and higher in the conceived after famine
group (66%). All 151 participants were invited to the MRI part of the
study. A total of eight subjects refrained from further participation due to
anxiety of being in the MR scanner. Another 15 subjects were excluded
for MR scanning because of the presence of metal in their bodies and nine
subjects declined to visit the hospital. Of one person who participated in
the MRI protocol, data had accidentally not been stored. We therefore
arrived at a total number of 118 MRI participants (mean age 67.5 � 0.9
years) of whom 30% was born before the famine, 35% was exposed to
famine in early gestation and 35%was conceived after the famine. Of the
33 excluded subjects, 52% had been born before the famine, 24% was
prenatally exposed to famine and 24% was conceived after the famine.
TwoMRI participants have had a CVA that was diagnosed by a physician.
None had ever been diagnosed with a depressive disorder, anxiety dis-
order, psychosis, schizophrenia, bipolar disorder, or obsessive-
compulsive disorder.

2.5. Study parameters

Maternal characteristics and birth characteristics were extracted from
medical birth records (i.e., maternal age at birth, gestational age, birth
weight, birth length, head circumference, ponderal index (PI) at birth,
with PI being calculated as a relationship between mass and height, thus
measuring fetal growth). Participants conducted a standardized inter-
view, took anthropometric measurements and performed several medical
and cognitive tests, measuring different cognitive domains. The inter-
view yielded information about current smoking, medical history and use
of medication. The Alice Heim Test 4th version (AH4) (Heim, 1970)
measures general intelligence, comprising 65 verbal and mathematical
reasoning items of increasing difficulty. The test score refers to the per-
centage of correct responses. Episodic memory was tested with the 15
words test and a paragraph encoding and recall test with participants
being told to reproduce immediately (immediate recall) and 30 min later
(delayed recall). The percentage retained from immediate to delayed
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recall condition was calculated (retrieval). A short computerized version
of the Stroop task (Stroop, 1935) was administered to measure executive
functioning, specifically selective attention. The name of a color was
presented in one of four different ink colors (i.e., the word “blue” printed
in yellow ink). Participants had 5 s to name the color of the ink and to
choose the correct option out of four names of colors printed in different
ink colors. Total test time was 5 min. Time of responding to each item in
seconds was recorded (reaction time), as well as percentage of correct
answers (score). The Trail Making Test (Tombaugh, 2004) was admin-
istered to measure cognitive processing speed (part A) and mental flex-
ibility (part B). Participants were asked to connect a sequence of 25
consecutive targets in a sequential order, the targets being all numbers
(part A) or alternating between numbers and letters (part B). If the test
taker was making an error, it had to be corrected before moving on to the
next dot. Time of finishing each part in seconds was recorded. Anxiety
and depression symptoms were measured with the Hospital Anxiety and
Depression Scale (HADS) (Zigmond and Snaith, 1983), with mild
depression being assumed for HADS scores between 8 and 10, moderate
depression being assumed for HADS scores between 11 and 14, severe
depression being assumed for HADS scores >14.

2.6. MRI data acquisition

Participants underwent a standardized MRI scan of the brain per-
formed on a 3T MRI scanner (Philips Ingenia, Best, the Netherlands) with
a 16-channel DStream Head-Spine coil. For the present study, we
analyzed data from T1-weighted 3D magnetization prepared rapid
acquisition gradient echo (MPRAGE). The MPRAGE protocol consisted of
a sagittal sequence with the following parameters: voxel
size ¼ 1.1 � 1.1 � 1.2 mm, field of view (FOV) ¼ 256 � 256 mm,
repetition time (TR) ¼ 6.8 ms and echo time (TE) ¼ 3.1 ms. Images were
visually inspected for gross structural abnormalities and presence of ar-
tifacts and double-checked by a radiologist in case of abnormal findings.

2.7. Preprocessing of MRI Data & Data Reduction

As described previously (Franke et al., 2010), preprocessing of the
T1-weighted images was done using the SPM8 package (http://www.fil.
ion.ucl.ac.uk/spm/) and the VBM8 toolbox (http://dbm.neuro.uni-jena.
de), running under MATLAB (www.mathworks.com). All T1-weighted
images were corrected for bias-field inhomogeneities, then spatially
normalized and segmented into GM, WM, and CSF within the same
generative model (Ashburner and Friston, 2005). The segmentation
procedure was further extended by accounting for partial volume effects
(Tohka et al., 2004), by applying adaptive maximum a posteriori
Fig. 1. Depiction of the BrainAGE concept. A: The model of healthy brain aging is
training sample (left; with an illustration of the most important voxel locations that w
previously unseen test subjects are estimated, based on their MRI data. B: The differe
positive BrainAGE scores indicate advanced brain aging. (Image reproduced from Fr
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estimations (Rajapakse et al., 1997), and by using a hidden Markov
random field model (Cuadra et al., 2005). Preprocessing the images
further included affine registration and smoothing with 4 mm
full-width-at-half-maximum (FWHM) smoothing kernels. Spatial resolu-
tion was set to 4 mm. Data were further reduced by applying principal
component analysis (PCA) in order to reduce computational costs, to
avoid severe overfitting, as well as to get a robust and widely applicable
age estimation model, utilizing the “Matlab Toolbox for Dimensionality
Reduction” (http://ict.ewi.tudelft.nl/~lvandermaaten/Home.html).

2.8. BrainAGE model training sample

To train the age estimation framework, we used MRI data of 313
healthy subjects [127 male] from the publicly accessible IXI cohort
(http://www.brain-development.org; data downloaded in September
2011) aged 45–86 years [mean (SD) ¼ 61.4 (9.1) years], which were
collected on three different scanners (i.e., Philips 1.5T, General Electric
1.5T, Philips 3.0T). Written informed consent was provided by all par-
ticipants according to procedures for the protection of human subjects,
approved by the local institutional committees (i.e., Hammersmith
Hospital London, UK; Guy's Hospital London, UK; Institute of Psychiatry
London, UK). T1-weighted images were preprocessed with the same
pipeline as described in Preprocessing of MRI Data & Data Reduction.

2.9. BrainAGE framework

The BrainAGE framework utilizes a machine-learning pattern recog-
nition method, namely relevance vector regression (RVR) (Tipping,
2000, 2001). It was recently developed to model healthy brain aging and
subsequently estimate individual brain ages based on T1-weighted im-
ages (Franke et al., 2010). As suggested previously, a linear kernel was
chosen, since age estimation accuracy was shown not to improve when
choosing non-linear kernels (Franke et al., 2010). Thus and in contrast to
support vector machines, parameter optimization during the training
procedure was not necessary. In general, the age regression model is
trained with chronological age and preprocessed whole brain structural
MRI data (as described above) of the training sample, resulting in a
complex model of healthy brain aging (Fig. 1A, left panel). Put in other
words, the algorithm uses those whole-brain MRI data from the training
sample that represent the prototypical examples within the specified
regression task (i.e., healthy brain aging). Additionally, voxel-specific
weights are calculated that represent the importance of each voxel
within the specified regression task (i.e., healthy brain aging). For an
illustration of the most important features (i.e., the importance of voxel
locations for regression with age) that were used by the RVR to model
trained with the chronological age and preprocessed structural MRI data of a
ere used by the age regression model). Subsequently, the individual brain ages of
nce between the estimated and chronological age results in the BrainAGE score,
anke et al., 2012a), with permission from Hogrefe Publishing, Bern.
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Table 1
Birth and adult health characteristics and descriptive statistics for the Dutch famine exposure groups.

Female sample (n ¼ 66) Male sample (n ¼ 52) Female vs. Male
sample p

Exposure to famine Exposure to famine

Born before In early
gestation

Conceived
after

p Born before In early
gestation

Conceived
after

p

Characteristics at birth
Maternal age at birth (years) 26.1 (5.7) 27.8 (5.6) 30.4 (5.6) 0.04 27.7 (6.5) 25.2 (6.2) 26.7 (6.6) 0.53 0.13
Gestational age (days) 287.4

(10.8)
286.6 (14.2) 287.7 (13.0) 0.96 278.8 (9.0) 291.1 (12.7) 284.6 (7.9) 0.02 0.41

Birth weight (g) 3248 (570) 3295 (483) 3554 (532) 0.12 3366 (456) 3398 (449) 3640 (456) 0.16 0.25
Birth length (cm) 54.4 (15.3) 50.4 (1.8) 53.4 (10.3) 0.44 50.5 (1.5) 51.3 (2.0) 50.9 (2.1) 0.51 0.23
Head circumference (cm) 32.3 (1.4) 32.3 (1.3) 33.1 (1.2) 0.07 32.4 (1.3) 32.6 (1.6) 33.8 (1.5) 0.02 0.13
Ponderal index (kg/m3) 26.2 (2.1) 25.6 (2.4) 26.4 (2.0) 0.48 26.1 (2.4) 25.2 (2.5) 27.5 (2.0) <0.01 0.60
Late-life health characteristics
Body mass index (kg/m2) 27.4 (4.0) 27.8 (4.7) 31.8 (5.8) <0.01 27.5 (2.4) 28.8 (5.2) 28.6 (4.9) 0.68 0.47
Systolic blood pressure (mmHg) 148.2

(14.7)
146.6 (15.7) 148.1 (16.4) 0.94 150.2

(16.5)
148.0 (13.9) 156.4 (16.6) 0.26 0.18

Diastolic blood pressure
(mmHg)

80.1 (8.1) 81.4 (10.7) 85.2 (10.1) 0.20 84.8 (16.6) 84.4 (9.3) 89.2 (9.7) 0.43 0.06

Heart rate (beats/min) 74.7 (9.5) 74.2 (8.2) 73.5 (10.8) 0.92 66.4 (14.4) 70.7 (8.3) 73.0 (11.7) 0.28 0.06
Non-fasting blood glucose (mg/
dl)

5.57 (1.50) 5.75 (1.04) 5.96 (1.59) 0.85 7.00 (1.77) 6.59 (1.44) 6.28 (1.64) 0.46 <0.01

Cholesterol (mg/dl) 6.14 (1.02) 5.66 (1.57) 5.86 (0.90) 0.44 5.15 (0.80) 5.02 (0.95) 5.63 (1.16) 0.16 <0.01
HDL (mg/dl) 1.70 (0.37) 1.87 (0.64) 1.75 (0.58) 0.60 1.60 (0.46) 1.35 (0.39) 1.35 (0.30) 0.14 <0.001
LDL (mg/dl) 3.70 (0.96) 3.15 (1.52) 3.43 (0.85) 0.31 2.90 (0.69) 2.90 (0.92) 3.39 (1.05) 0.21 0.07
Triglycerides (mg/dl) 1.65 (0.68) 1.43 (1.19) 1.52 (0.72) 0.75 1.45 (0.66) 1.72 (1.10) 2.20 (1.59) 0.21 0.16
Diabetes (%) 14.3 19.0 14.3 0.88 21.4 35.7 28.6 0.92 0.27
Hypertension (%) 47.6 33.3 38.1 0.66 28.6 50.0 57.1 0.66 0.79
Hypercholesterolaemia (%) 23.8 23.8 38.1 0.70 42.9 57.1 35.7 0.59 0.33
History of CVA or TIA (%) 0.0 0.0 4.8 0.39 7.1 7.1 21.4 0.52 <0.05
Current smokers (%) 4.8 23.8 14.3 0.23 0.0 7.1 21.4 0.22 0.31

Data are given as means (SD), except where given as numbers and percentages P-values are reported from ANOVAs comparing the three famine exposure groups and
Students' t-tests testing women vs. men (last column). Bold type indicates statistical significance. CVA ¼ cerebrovascular accident; HDL ¼ high density lipoprotein;
LDL ¼ low density lipoprotein; TIA ¼ transient ischaemic attack.
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normal brain aging and more detailed information please refer to Franke
et al. (2010). Subsequently, the brain age of a test subject can be esti-
mated using the individual tissue-classified MRI data (as described
above), aggregating the complex, multidimensional aging pattern across
the whole brain into one single value (Fig. 1A, right panel). In other
words, all the voxels of the test subject's MRI data are weighted by
applying the voxel-specific weighting matrix. Then, the brain age is
calculated by applying the regression pattern of healthy brain aging and
aggregating all voxel-wise information across the whole brain. The dif-
ference between estimated and chronological age will reveal the indi-
vidual brain age gap estimation (BrainAGE) score, with positive values
indicating advanced structural brain aging and negative values indi-
cating decelerated structural brain aging. Consequently, the BrainAGE
score directly quantifies the amount of acceleration or deceleration of
brain aging (Fig. 1B). For example, if a 70 yrs old individual has a
BrainAGE score of þ5 yrs, this means that this individual shows the
typical atrophy pattern of a 75 yrs old individual. Recent work has
demonstrated that this method provides reliable and stable estimates.
Specifically, the BrainAGE scores calculated from two shortly delayed
scans on the same MRI scanner, as well as on separate 1.5T and 3.0T
scanners, produced intraclass correlation coefficients (ICC) of 0.93 and
0.90, respectively (Franke et al., 2012a). Within this study, the BrainAGE
framework was applied using the preprocessed GM images. For training
the model as well as for predicting individual brain ages, we used “The
Spider” (http://www.kyb.mpg.de/bs/people/spider/main.html), a
freely available toolbox including several machine learning algorithms
running under MATLAB. Individual BrainAGE scores can be found in SI
Data Spreadsheet.
2.10. Statistical analysis

Descriptive statistics were used to summarize sample characteristics,
i.e. birth and late-life health characteristics (Table 1), fractional brain
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tissue volumes, neuropsychiatric test scores, and BrainAGE scores
(Table 2). Fractional brain volumes were calculated as a ratio of indi-
vidual ICVs. Analysis of variance (ANOVA) was used to test for differ-
ences between the three famine exposure groups (i.e., ‘born before’, ‘in
early gestation’, ‘conceived after’), separately in both genders. Effect size
was calculated using η2. Student's t-tests were performed to test for dif-
ferences between the female and male samples.

Gender-specific standard least squares linear regression analyses were
performed explore the importance of each variable, i.e., chronological
age, famine exposure (as this variable has three states, it was dummy
coded as ‘born before’ [0/1] and ‘in early gestation’ [0/1]), birth char-
acteristics (i.e., maternal age at birth, gestational age, birth weight, birth
length, head circumference, ponderal index), and late-life health char-
acteristics (i.e., body mass index, blood pressure, heart rate, blood
glucose, cholesterol, HDL, LDL, triglycerides, diabetes, medical treatment
of hypertension, medical treatment of hypercholesterolaemia, history of
cerebral incidences, current smoking, current alcohol intake) in order to
explain the observed of variance in late-life BrainAGE scores. Results are
additionally reported with false discovery rate (FDR)-corrected p-values
for each variable.

Finally, all cognitive and neuropsychiatric variables are clustered by
constructing components, which are linear combinations of those vari-
ables in a cluster of similar variables, i.e. groups of highly correlated
variables. The cluster components are constructed using the first prin-
cipal component of the variables in that cluster, thus explaining as much
of the variation as possible among the variables in that cluster. Variable
clustering in order to avoid statistical error 1 inflation was chosen over
PCA because of better interpretability of the new cluster-based variables.
Then, least squares regression analyses were performed on the clusters,
including BrainAGE scores, gender, famine exposure as predictors, in
order to explore, whether individual BrainAGE scores or exposure to
famine in utero had any effects on cognitive and neuropsychiatric
measures.

http://www.kyb.mpg.de/bs/people/spider/main.html


Table 2
Group characteristics and descriptive statistics for the Dutch famine exposure groups.

Female sample (n ¼ 66) Male sample (n ¼ 52) Female vs. Male
sample p

Exposure to famine Exposure to famine

Born before In early
gestation

Conceived
after

p Born before In early
gestation

Conceived
after

p

n 21 22 23 – 14 19 19 –

Age at MR scan (years) 68.7 (0.5) 67.4 (0.2) 66.7 (0.4) <0.001 68.6 (0.4) 67.4 (0.1) 66.7 (0.4) <0.001 0.57
Intracranial Volume (ICV) and Fractional Brain Tissue Volumes
ICV volume (ml) 1274 (95) 1294 (90) 1260 (101) 0.49 1438 (116) 1411 (118) 1518 (88) 0.01 <0.001
Fractional GM volume (/ICV) 0.44 (0.02) 0.44 (0.02) 0.44 (0.02) 0.85 0.43 (0.02) 0.42 (0.02) 0.42 (0.02) 0.49 <0.001
Fractional WM volume (/ICV) 0.36 (0.02) 0.37 (0.02) 0.37 (0.01) 0.46 0.37 (0.02) 0.37 (0.02) 0.37 (0.02) 0.87 0.41
Fractional CSF volume (/ICV) 0.20 (0.02) 0.20 (0.02) 0.19 (0.01) 0.22 0.21 (0.01) 0.21 (0.02) 0.21 (0.02) 0.65 <0.001
BainAGE score
BainAGE score (years) �0.09

(4.28)
0.91 (3.97) �0.09 (5.27) 0.71 �1.81

(3.51)
2.53 (5.25) 0.53 (4.59) 0.03 0.66

Neuropsychological Data
AH4: Score (%) 62.8 (13.5) 63.5 (17.0) 60.4 (17.4) 0.80 70.8 (9.2) 68.3 (10.8) 66.4 (12.8) 0.54 0.02
Episodic memory: 15 Word test
(sum)

33.7 (8.9) 35.0 (8.9) 32.3 (7.9) 0.57 29.0 (6.0) 26.3 (9.0) 26.3 (8.7) 0.57 <0.001

Episodic memory: Immediate
recall (sum)

23.0 (4.8) 22.1 (7.0) 20.7 (7.0) 0.49 22.6 (5.9) 18.7 (7.3) 18.6 (8.2) 0.23 0.10

Episodic memory: Delayed recall
(sum)

16.3 (6.0) 16.8 (6.2) 15.5 (6.8) 0.79 17.1 (6.9) 13.4 (7.2) 13.4 (8.3) 0.30 0.17

Episodic memory: Retrieval (%) 69.4 (18.0) 75.1 (14.8) 73.6 (18.4) 0.54 72.9 (22.3) 67.1 (30.3) 71.2 (26.5) 0.81 0.52
Stroop task: Reaction time (sec) 3.51 (0.46) 3.52 (0.64) 3.43 (0.60) 0.85 3.21 (0.37) 3.20 (0.48) 3.23 (0.55) 0.98 0.009
Stroop task: Score (%) 50.1 (26.3) 42.9 (29.7) 35.4 (28.4) 0.23 55.4 (35.1) 55.2 (31.9) 66.1 (30.7) 0.52 0.003
Trail Making Test A (sec) 38.7 (11.9) 36.5 (8.8) 38.5 (15.8) 0.82 35.4 (5.3) 35.8 (8.8) 36.1 (14.7) 0.98 0.33
Trail Making Test B (sec) 93.1 (36.5) 80.3 (27.9) 87.1 (35.9) 0.46 83.6 (32.1) 85.6 (28.7) 64.8 (17.1) 0.05 0.14
HADS: Anxiety score (sum) 4.00 (2.49) 4.95 (2.93) 6.00 (3.38) 0.09 3.00 (2.00) 4.11 (3.03) 3.67 (2.99) 0.53 0.01
HADS: Depression score (sum) 2.19 (2.36) 1.89 (1.91) 2.78 (3.32) 0.54 1.21 (0.97) 2.95 (3.31) 3.39 (5.27) 0.25 0.61

Data are displayed as mean (SD). P-values are reported from ANOVAs comparing the three famine exposure groups and Students' t-tests testing women vs. men (last
column). Bold type indicates statistical significance.
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Data processing and statistical analyses were performed using MAT-
LAB and JMP 13.

3. Results

3.1. Group characteristics

The MRI study sample from the Dutch famine cohort included
offspring who were considered as prenatally exposed to MNR due to the
Dutch famine during early gestation (n ¼ 41) as well as two control
groups, i.e. offspring born before the Dutch famine (n¼ 35) and offspring
who were conceived after the Dutch famine (n ¼ 42). In total, the MRI
study sample included 66 women and 52 men, aged between 65.9 and
69.6 yrs at the time of MRI scanning (mean age � standard deviation
(SD): 67.5 � 0.9 yrs). As would be expected due to grouping based on
date of birth, age at MRI scan differed between the famine exposure
groups (F ¼ 272.2, p < 0.001), but not between females and males
(Table 2). Additionally, maternal age and body mass index (BMI) in late-
life differed between famine exposure groups in the female sample;
gestational age, head circumference at birth, and ponderal index (PI)
differed between famine exposure groups in the male sample (Table 1).
Interestingly, risk factors for a vascular pathology in late life did not
differ between famine exposure groups, in neither females, nor males.

3.2. Brain characteristics

As the focus of our study was on BrainAGE analyses, we only give a
rough overview of the general brain characteristics. More detailed ana-
lyses on regional brain volumes and white matter integrity in the same
MRI study sample were published recently (de Rooij et al., 2016). In late
adulthood, total intracranial volume (ICV) differed between the famine
exposure groups in the male sample (Table 2), with significantly
decreased ICV in offspring who had been exposed to the Dutch famine
during early gestation (p< 0.05). In the female sample, ICV did not differ
between groups, but were significantly lower as compared to the male
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sample (p < 0.001; Table 2). Absolute brain tissue volumes were cor-
rected for individual ICV to account for differences in head size. Frac-
tional gray matter volume (GM) was higher in the female as compared to
the male sample (t ¼ 4.39, p < 0.001), whereas fractional cerebro-spinal
fluid volume (CSF) volume was higher in the male as compared to the
female sample (t ¼ �3.53, p < 0.001). Fractional white matter volumes
(WM) did not differ between genders (t ¼ �0.82, n.s.). Exposure to
famine had no effect on fractional brain tissue volumes in late adulthood
(Table 2). As comprehensively analyzed in a recent study on brain size
and structure in the Dutch famine birth cohort (de Rooij et al., 2016),
birth weight, head circumference at birth and at age 68 were all signif-
icantly positively associated with ICV and total brain volume/ICV ratio
was strongly associated with smoking status and history of cerebrovas-
cular accident or transient ischaemic attack.

3.3. Brain aging in late adulthood

BrainAGE scores, which quantify individual neuroanatomical aging in
relation to age-specific atrophy patterns, differed significantly between
the famine exposure groups in the male sample (F ¼ 3.6, p < 0.05,
η2 ¼ 0.13), but not in the female sample (F ¼ 0.3, n.s.; Table 2). Post-hoc
tests (incl. Bonferroni correction) showed significantly increased Brain-
AGE scores in male offspring who had been exposed to the Dutch famine
during early gestation as compared to subjects born before the famine by
about 4.3 years (p < 0.05; Fig. 2), but not as compared to subjects
received after the famine (2.0 years, n.s.). BrainAGE scores did not differ
between male and female samples (F ¼ 0.04, n.s; Table 2).

In the female sample, the least squares regression model, including
measures at birth and actual health characteristics as predictors, could
not explain the observed variance in individual BrainAGE scores
(adjusted R2 ¼ 0.09, p ¼ 0.30; Fig. 3). Because the regression model did
not reach statistical significance, we do not report further details on the
predictor variables in the female sample.

In the male sample, the least squares regression model explaining the
observed variance in individual BrainAGE scores showed very good



Fig. 2. Neurostructural aging in the
Dutch famine birth cohort study. Brain-
AGE scores differed significantly between
the three groups only in the (B) male, but
not in the female (A) sample. In the male
sample, post-hoc tests showed significantly
increased scores in subjects with exposure to
famine in early gestation (p < 0.05;
asterisk). The gray boxes contain the values
between the 25th and 75th percentiles of
the groups, including the median (red/blue
lines for female/male samples). Black lines
extending above and below each box sym-
bolize data within 1.5 times the inter-
quartile range (outliers are displayed with a
þ). The width of the boxes depends on the
group size.

K. Franke et al. NeuroImage 173 (2018) 460–471
performance (adjusted R2 ¼ 0.63, p ¼ 0.007; Fig. 3). After FDR-
correction, maternal age at birth, head circumference at birth, medical
treatment of hypertension, history of cerebral incidences, actual heart
rate, and current alcohol intake emerged to be the most influential var-
iables (Table 3).

3.4. Relationship between individual brain aging and neuropsychiatric
parameters

Cognitive and Neuropsychiatric test scores in late adulthood did not
differ between the Dutch famine exposure groups, except for Trail Making
Test B, measuring mental flexibility, in the male sample, with signifi-
cantly better performances in men conceived after the famine (F ¼ 3.2,
p< 0.05; Table 2). As compared to women, men performed better in AH4
test, measuring general intelligence, and Stroop test, measuring selective
attention (Table 2). Additionally, men showed lower anxiety scores
(HADS). Women performed better in 15 Words Test, measuring episodic
memory (Table 2).

To explore, whether individual BrainAGE scores or exposure to
famine in utero had any effects on cognitive and neuropsychiatric mea-
sures, least squares regression analyses were performed, including
BrainAGE scores, gender, famine exposure, and the interaction between
BrainAGE and famine exposure as predictors. Before performing regres-
sion analyses, variable clustering resulted in three clusters (Table 4).
Cluster 1 represents cognitive attention and explained 57% of the vari-
ance in the included test scores. Cluster 2 represents episodic memory
and explained 62% of the variance in the included test scores. Cluster 3
represents psychiatric measures and explained 80% of the variance in the
dicted by the sex-specific least squares regression model), the red line shows the b
regression lines.
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included test scores. Altogether, variable clustering explained 63% of the
variance in the neuropsychiatric data. The regression analyses resulted in
significant models only for clusters 1 and 2, with model effects due to
gender in both models (Table 5). After Bonferroni correction for multiple
testing only the results for cluster 1 remained significant.

4. Discussion

The present study evaluates the long-term effects of MNR during early
gestation in humans on neuroanatomical aging and its behavioral cor-
relates in late adulthood. It combines our recently presented non-invasive
in vivo MRI biomarker for brain aging with the unique Dutch Famine
Birth Cohort Study in order to analyze MNR related differences in indi-
vidual brain aging in old age. Indicated by increased BrainAGE scores
resulting from increased subtle changes in brain structure, our results
provide in vivo evidence for a status of premature brain aging in late
adulthood, particularly in men who had been exposed to famine in utero.
The effects of MNR on BrainAGE occurred without effects on size or
weight of the baby at birth and vascular pathology in late life, which
stresses the significance of early nutritional conditions in life-long
developmental programming even more.

The BrainAGE approach was designed to indicate deviations in age-
related spatiotemporal brain changes. Though “healthy” brain aging
has been found to follow highly coordinated and sequenced patterns of
brain tissue loss and CSF expansion (Raz and Rodrigue, 2006; Resnick
et al., 2003; Terribilli et al., 2011), multiple factors affect and modify
those individual trajectories. Applying the BrainAGE method results in a
single global estimation score of the individual “brain age”, while
Fig. 3. Least squares regression models
for explaining the observed variance in
individual BrainAGE scores by famine
exposure, birth, and actual health mea-
sures as predictors. Actual vs. predicted
BrainAGE scores resulting from the regres-
sion analyzes for female (left) and male
(right) offspring at age 68 years. In females
(left panel), the observed variance in indi-
vidual BrainAGE scores could not be
explained by famine exposure, birth, and
actual health measures (adj. R2 ¼ 0.09,
p ¼ 0.30). In males (right panel) the
observed variance in individual BrainAGE
scores was explained by famine exposure,
birth, and actual health measures as pre-
dictors (adj. R2 ¼ 0.63, p ¼ 0.007). Black
dots show individual data points (i.e.,
observed BrainAGE scores vs. scores pre-

est fitting regression line, and the light red area shows the range of possible



Table 3
Standardized regression coefficients resulting from the least square regression
model for late-life BrainAGE scores in the male sample of the Dutch famine MRI
study.

Male sample

Standardized
regression
coefficient β

p-value (before
FDR-
correction)

p-value (after
FDR-
correction)

Chronological age �1.10 0.02 0.07
Famine exposure group
(’born before’)

�1.40 0.02 0.06

Famine exposure group (’in
early gestation’)

�0.34 0.18 0.30

Birth characteristics
Maternal age �0.47 0.007 0.04
Gestational age �0.09 0.54 0.76
Birth weight �3.14 0.08 0.20
Birth length 2.50 0.10 0.22
Head circumference 1.03 0.0007 0.02
Ponderal index 1.76 0.14 0.26
Late-life health characteristics
Body mass index 0.36 0.12 0.23
Systolic blood pressure 0.17 0.43 0.69
Diastolic blood pressure 0.00 0.98 0.98
Heart rate 0.58 0.01 <0.05
Non-fasting blood glucose 0.10 0.69 0.83
Cholesterol �0.50 0.48 0.72
HDL �0.04 0.91 0.95
LDL 0.13 0.84 0.92
Triglycerides �0.08 0.75 0.86
Diabetes �0.09 0.69 0.83
Medical treatment of
Hypertension

0.47 0.006 0.04

Medical treatment of
Hypercholesterolaemia

�0.08 0.62 0.83

History of CVA or TIA �0.35 0.01 0.05
Current smokers �0.27 0.06 0.16
Alcohol intake (>1 glass/
week)

�0.47 0.005 0.04

CVA ¼ cerebrovascular accident; TIA ¼ transient ischaemic attack.

Table 5
Least squares regression analyses for clusters of cognitive and neuropsychiatric
measures, including BrainAGE scores, gender, and famine exposure as predictors.

Model fit Model parameter estimates (Standard
error)

Adj.
R2

p BrainAGE
score

Gender Famine
exposure

Cluster 1 (AH4: Score,
Trail Making Test A,
Trail Making Test B,
Stroop task: Reaction
time, Stroop task:
Score)

0.07 0.016 0.04
(0.06)

�1.02
(0.32)
**

�0.00
(0.34)

Cluster 2 (Episodic
memory: Immediate
recall, Delayed recall,
Retrieval, 15 Word
test)

0.04 0.05# �0.11
(0.06)

�0.67
(0.32)*

0.04
(0.34)

Cluster 3 (HADS:
Anxiety score,
Depression score)

0.00 0.73 0.03
(0.05)

�0.26
(0.26)

0.04
(0.27)

Bold type indicates statistical significance, with # denoting loss of significance
after Bonferroni correction. *p < 0.05 **p < 0.01.
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accounting for the multidimensional aging pattern across all voxels in the
brain. With correlations of r ¼ 0.92 between chronological age and
estimated brain age in healthy adults, the BrainAGE framework has
proven to be a straightforward method to accurately and reliably esti-
mate structural brain age with minimal preprocessing and parameter
optimization (Franke et al., 2010). Individuals with increased BrainAGE
scores may thus be at risk for several neurodegenerative diseases and
related functional declines. Profound relationships have already been
observed between BrainAGE and disease severity, prospective worsening
of cognitive functions (Franke et al., 2012a), conversion to Alzheimer's
disease (Gaser et al., 2013), as well as diabetes mellitus type 2 (Franke
et al., 2013). Furthermore, in elderly people, increased BrainAGE scores
Table 4
Results of variable clustering for neuropsychiatric measures.

Cluster 1
[R2 ¼ 0.57]

R2 with own cluster coefficients

AH4: Score 0.57 �0.446
Episodic memory: 15 Word test – –

Episodic memory: Immediate recall – –

Episodic memory: Delayed recall – –

Episodic memory: Retrieval – –

Stroop task: Reaction time 0.57 0.446
Stroop task: Score 0.60 �0.458
Trail Making Test A 0.49 0.415
Trail Making Test B 0.63 0.469
HADS: Anxiety score – –

HADS: Depression score – –

Underlining marks the most representative variable in each cluster.
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were explained by sex-specific sets of health parameters (Franke et al.,
2014). Similar approaches for evaluating individual age-related atrophy
scores also showed accelerated brain aging in schizophrenia (“schizo-
phrenia gap”; Schnack et al., 2016), traumatic brain injury (“Predicted
Age Difference” [PAD]; Cole et al., 2015), mild cognitive impairment and
Alzheimer's disease (“Gaussian Process model [GP] z-scores"; Ziegler
et al., 2014), as well as significant associations of individual brain aging
with several health- and lifestyle-related risk factors in the general pop-
ulation (“Spatial Pattern of Atrophy for Recognition of Brain Aging”
[SPARE-BA]; Habes et al., 2016b).

In adulthood, moderate dietary restriction was shown to elongate
lifespan in a number of species, including humans (Fontana et al., 2010).
However, increasing evidence suggests dietary restriction during prena-
tal life having the opposite effect, i.e. being related to a shortened life-
span as well as increased prevalence for non-communicable diseases in
later life, including glucose intolerance, diabetes mellitus,
cardio-vascular diseases, metabolic syndrome, hypertension, and obesity
(Lillycrop and Burdge, 2011; Ozanne and Hales, 2004; Tarry-Adkins and
Ozanne, 2014). This is probably due to a mechanism of permanent
alteration of organ structure and metabolism occurring in the fetus in
order to ensure survival of the organism under suboptimal conditions, as
postulated by the thrifty phenotype hypothesis (Hales and Barker, 2001).
Especially when confronted with a postnatal environment of adequate
nutrition or even overnutrition, this early life programming to a subop-
timal nutritional supply has tremendous effects on the lifespan and
life-long health, as recently demonstrated in several epidemiological and
Cluster 2
[R2 ¼ 0.62]

Cluster 3
[R2 ¼ 0.80]

R2 with own cluster coefficients R2 with own cluster coefficients

– – – –

0.40 0.400 – –

0.68 0.524 – –

0.94 0.613 – –

0.47 0.436 – –

– – – –

– – – –

– – – –

– – – –

– – 0.80 0.707
– – 0.80 0.707
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experimental studies (Ozanne and Hales, 2004; Tarry-Adkins and
Ozanne, 2014). As decreased fetal nutrient delivery due to MNR is not
only common in developing but also industrialized countries (Baker
et al., 2009; Beard et al., 2009; Black et al., 2008; Raznahan et al., 2012;
Roseboom et al., 2006, 2011; Zhang et al., 2015), it is therefore relevant
to study the effects of a suboptimal environment in utero on brain
structure and its aging processes as this may help to further understand
the factors and preconditions of individual brain aging trajectories and
individual susceptibility to neurodegenerative diseases like Alzheimer's
disease (Gaser et al., 2013).

Only few studies in humans have directly measured the effects of
prenatal undernutrition on neuroanatomy (for a recent review please see
Franke et al., 2017c), instead investigating the associations between
brain morphology and size or weight at birth, which is an indirect
measure for the fetal environment, with small size and low weight at
birth resulting from prenatal undernutrition due to maternal undernu-
trition, placental insufficiency, extreme maternal vomiting or a multiple
pregnancy. In a number of human samples, small size at birth and low
birth weight has already been associated with altered brain morphology
during gestation, in childhood, adolescence and well into older age.
These alterations, including smaller total and regional brain volumes,
reductions in cortical surface area and prefrontal cortical thickness, have
also been demonstrated to correlate with neurobehavioral outcomes and
impaired cognitive function, like slower processing speed and reduced
executive functioning (Rogne et al., 2015). However, the effects of MNR
on neuroanatomical aging in humans had not been explored yet, but a
recent study in the Dutch famine cohort showed that prenatal exposure to
famine in men is associated with smaller total brain volume in late
adulthood (de Rooij et al., 2016). Utilizing the BrainAGE approach,
which accounts for the multidimensional aging pattern across the brain,
this study shows that prenatal famine exposure in men is also associated
with a status of premature aging of the brain. Interestingly, the effects of
MNR during early gestation on individual brain aging occurred in the
absence of fetal growth restriction at birth, which stresses the signifi-
cance of early nutritional conditions in life-long developmental
programming.

In statistically explaining the observed variance in late-life BrainAGE
scores in males, a combination of birth measures (i.e., maternal age, head
circumference) and health characteristics (i.e., heart rate, hypertension,
alcohol intake) emerged to be the most important predictors. This result
is in line with recent (epidemiological large-scale) studies that demon-
strated an association between lifestyle and health markers, especially
markers of cardio-vascular disease and the metabolic syndrome, and
differences in rate of brain atrophy and individual brain aging (Cole
et al., 2017a; Debette et al., 2011; Franke et al., 2014; Habes et al.,
2016a). However, all these predictors did not differ between male
offspring, who were exposed to the Dutch famine during early gestation
vs. those male offspring, who were born before the Dutch famine. Thus,
the observed MNR-related increase in late-life BrainAGE scores in the
male offspring, who were exposed to the Dutch famine during early
gestation, can not be explained by increased cardio-vascular and diabetes
pathology, although those incidences have previously been shown to be
associated with exposure to MNR during early gestation (Painter et al.,
2006; Roseboom et al., 2006). Rather, disturbances during early brain
development due to fetal undernutrition in early gestation might addi-
tionally affecting individual brain structure in late-life, resembling pat-
terns of premature brain aging. Given previously reported subtle but
widespread MNR-induced disturbances of early organizational processes
in cerebral development that result in major impairments of fetal brain
development (Antonow-Schlorke et al., 2011; King et al., 2004), the
brain microstructures might be more vulnerable to aging-related
changes, thus leading to advanced atrophy. Since this study is a
cross-sectional study, this issue needs to be illuminated further in future
studies, including longitudinal studies and employing to-be-developed
region-specific brain aging models.

As hypothesized and being in line with recent developmental
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programming models suggesting that long-term (health) outcomes of
adverse in utero conditions will be more prominent in male than female
offspring (Aiken and Ozanne, 2013), gender-specific BrainAGE analyses
showed stronger effects of MNR due to exposure to famine during
gestation on late-life BrainAGE scores in the male offspring. More spe-
cifically, in adult male offspring, who had been exposed to MNR during
early gestation, BrainAGE scores were increased by more than 4 years as
compared to men born before the famine, whereas adult female
offspring, who had been exposed to MNR in utero, showed increases in
BrainAGE of about one year only.

A potential alternative explanation for the sex differences we found
may be that of selective survival of cohort members in the present study.
We have previously demonstrated excess mortality up to the age of 63
years in female offspring exposed to famine in early gestation in the
whole Dutch famine birth cohort (van Abeelen et al., 2012), which may
have resulted in selective participation of women who were alive and in
sufficient condition to be selected for participation in the present MRI
study at age 67 years. Data on late-life health characteristics are some-
what inconclusive, showing increased cholesterol and HDL levels, but
also revealing lower blood-glucose levels as well as fewer incidences of
cerebrovascular accidents and transient ischaemic attacks in the female
sample. This might lead to an underestimation of the effect of MNR on
BrainAGE scores in the exposed female offspring due to better health
conditions of the surviving females in the whole Dutch famine birth
cohort compared to males. Therefore and because of the longer living of
females in general, the effect of MNR on brain aging may take longer to
evolve and thus to be discovered in the (surviving) female sample.

In human and animal studies, MNR-induced alterations in brain
structure have also been associated with cognitive and behavioral defi-
cits, behavioral and psychiatric disorders, as well as later-life neurode-
generative disorders (Ars et al., 2016; de Rooij et al., 2010; Faa et al.,
2014; Keenan et al., 2013; Raznahan et al., 2012; Rodriguez et al., 2012).
Also, advanced brain aging has been shown to be associated with
increased cognitive decay and the risk of neurodegenerative diseases
(Cole et al., 2017a; Debette et al., 2011; Franke et al., 2012a, 2013; Gaser
et al., 2013; Habes et al., 2016a; L€owe et al., 2016). However, and in line
with the study on differences of brain volumes in the same cohort (de
Rooij et al., 2016), this study did not reveal any associations between
BrainAGE scores or famine exposure to cognitive or neuropsychiatric
measures. Again, an explanation for this may be that the Dutch famine
birth cohort MRI subsample study was hampered by selective partici-
pation – as compared to the general population – of more healthy sub-
jects, of whom nobody has ever been diagnosed with a depressive
disorder, anxiety disorder, psychosis, schizophrenia, bipolar disorder, or
obsessive-compulsive disorder.

There are a few limitations to the present study: First, neither the
extent to which individual exposure to famine differed, nor the individ-
ual limitation of specific nutrient intake (like protein, folate, unsaturated
fatty acids, and other micronutrients), shown to differently disrupt pro-
cesses of early brain development (Georgieff, 2007; Ramel and Georgieff,
2014), is known. Second, it is not possible to disentangle the effects of the
variable degrees of maternal stress or other prenatal environmental in-
fluences, and other influences, which may have affected fetal brain
development (Symonds et al., 2000). Third, the conditions of the (im-
mediate) postnatal environment and nutrition supply are also affecting
general health and individual brain aging trajectories. After the Dutch
famine, food situations improved over time, which may have positively
affected brain development in later gestation, but did not compensate for
the disturbances in early developmental programming and brain devel-
opment due to undernutrition in early gestation. In the cross-sectional
comparison analyses presented here, these potential influences during
the life course on individual brain maturation and aging could not been
separated from the life-lasting effects of perinatal nutrient delivery on
neurodevelopment. However, direct effects of fetal undernutrition on the
development of the central nervous system (CNS) were shown by a study,
which reported that babies who had been exposed to the Dutch famine
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during the first gestational trimester showed an increase in the preva-
lence of congenital anomalies of the CNS, including spina bifida and
hydrocephalus (Stein et al., 1975). Additionally, the associations of in-
dividual BrainAGE scores with cognitive and neuropsychiatric perfor-
mances are still indistinct in cognitively healthy and non-diseased
samples. Further research will investigate this issue in epidemiological
samples. Fourth, condensing whole-brain voxel-wise information into a
single number by brain age prediction models is eventually criticised as
being overly ‘black box’. Especially, critics are stressing that by lumping
together all information derived from brain scans for predicting age or
being unclear about exactly which features brain age prediction is based
on, important neuroscientific information may be disregarded. However,
no one single part of the brain is the sole driver of aging as age-related
changes to the brain are subtle, non-linear, spatially distributed and
vary between individuals. Thus, the advantage of brain age paradigms is
that the machine learning algorithm can be trained with a wide range of
different phenotypes of healthy/normal brain structure, which avoids
reductively focusing on some group average – most likely being unrep-
resentative of any single individual. Additionally, large areas of relatively
small changes in age-related brain structure might actually contribute as
much to the model of healthy/normal brain aging as small areas of
relatively large changes in age-related brain structure, thus only
considering large changes would result in reduced accuracy of the brain
age prediction model (for a more thorough discussion of this issue please
refer to Cole and Franke, 2017).

In conclusion, prenatal undernutrition is associated with a status
resembling premature aging of brain structure in men during late
adulthood. Future work should explore the effects of several factors of
maternal stress during pregnancy (e.g. malnutrition, maternal obesity
and diabetes, smoking during pregnancy, twin pregnancy, placental
insufficiency, anxiety) on neuroanatomical maturation and aging in
order to identify subtle, yet clinically-significant, changes in brain
structure, thus contributing to a better understanding of the conse-
quences of prenatal environment on life-long brain health as well as to an
early diagnosis of neurodegenerative diseases and facilitating early
treatment or preventative interventions, e.g. by adequately feeding
women during pregnancy in order to prevent chronic diseases in future
generations. Additionally, gender-specific mechanisms should be taken
into account in future studies.
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