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A R T I C L E I N F O A B S T R A C T

Brain aging is a major determinant of aging. Along with the aging population, prevalence of neurodegenera-
tive diseases is increasing, therewith placing economic and social burden on individuals and society. Individual
rates of brain aging are shaped by genetics, epigenetics, and prenatal environmental. Biomarkers of biological
brain aging are needed to predict individual trajectories of aging and the risk for age-associated neurological
impairments for developing early preventive and interventional measures. We review current advances of in vivo
biomarkers predicting individual brain age. Telomere length and epigenetic clock, two important biomarkers
that are closely related to the mechanistic aging process, have only poor deterministic and predictive accuracy
regarding individual brain aging due to their high intra- and interindividual variability. Phenotype-related bio-
markers of global cognitive function and brain structure provide a much closer correlation to age at the individ-
ual level. During fetal and perinatal life, autonomic activity is a unique functional marker of brain development.
The cognitive and structural biomarkers also boast high diagnostic specificity for determining individual risks for
neurodegenerative diseases.

1. Introduction

Endeavors to prolong the healthy lifespan have a long history and
have always inspired mankind. With the population aging worldwide,
understanding the biology of healthy aging is more relevant than ever.
With the great heterogeneity of health outcomes in older individuals
(Lowsky et al., 2014), the raised life expectancy prompts fears of an in-
crease in age-related brain diseases such as cognitive decline and de-
mentia (Vos et al., 2012). A major goal of health care systems is to
ensure that increased longevity is also accompanied by increased dis-
ease-free life expectancy. Effective and affordable strategies are needed
to deal with the rising burden of age-related diseases which include
a large proportion of neurocognitive and neuropsychiatric disorders
(Christensen et al., 2008).

In general, aging is a vastly complex process, broadly defined as a
time-dependent decline of organ functions that is driven by the pro-
gressive accumulation of cellular damage (Lopez-Otin et al., 2013) and
changes in intercellular communication throughout life (Laplante and
Sabatini, 2012; Rando and Chang, 2012). Aging is influenced by ge-
netic factors, which itself are modified by environmental epigenetic in

fluences that already have major effects early during development
(Gluckman et al., 2008; Tarry-Adkins and Ozanne, 2014; Van den Bergh,
2011). Biological systems with a long development and/or intrinsic
plasticity, such as the central nervous system, the stress axis, and the
digestive, cardiovascular and immune systems are especially suscepti-
ble to environmental challenges (Bale, 2015; Griffiths and Hunter, 2014;
Harris and Seckl, 2011). The plasticity of these biological systems is
highest during early development when organ systems are still imma-
ture. During critical and sensitive periods of development, early envi-
ronmental influences act through epigenetic modifications of the DNA,
such as DNA methylation, histone modification, and transcriptional reg-
ulation by micro RNA, thus allowing optimal adaptation of the organism
to its environment (Cao-Lei et al., this issue).

More specifically, structural brain development and aging is charac-
terized by region-specific and non-linear patterns of highly coordinated
and sequenced events of progressive (e.g., cell growth and myelination)
and regressive (e.g., synaptic pruning) processes during development
(Silk and Wood, 2011) and wide-spread atrophy during aging (Good et
al., 2001; Resnick et al., 2003). These demonstrate robust patterns of
brain structural alterations during development and aging, with some
brain regions showing greater alterations than others (Hogstrom et al.,
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2013; Storsve et al., 2014). Advanced brain aging has widely been
shown to be associated with an increased prevalence of neurodegenera-
tive diseases. With the advent of non-invasive methods of in vivo brain
imaging, especially magnetic resonance imaging (MRI), and the avail-
ability of various automated computational methods for processing and
analyzing MRI data, cross-sectional as well as longitudinal neuroimag-
ing studies on brain structure and function are increasingly contributing
to a better understanding of healthy as well as aberrant structural brain
development and aging.

These changes in brain structure have been shown to be accompa-
nied by changes in cognitive function (i.e., cognitive ageing). During
adulthood, performance decline in the majority of cognitive domains
and memory impairments occur (Horn and Cattell, 1967), although the
precise relationship between structural brain aging and cognitive age-
ing is still unclear (Hedden and Gabrieli, 2004). However, cognitive
processing capacity has been shown to considerably change across the
lifespan, gradually declining with increasing age (Baltes et al., 1999;
Barrouillet and Camos, 2012). Especially the cerebral system underly-
ing visual perceptual speed and visual short-term memory storage per-
meate the scaffolding of cognition at all hierarchical levels of the brain
(Petersen and Posner, 2012).

Major environmental challenges during the prenatal period include
nutrition restriction and stress and have been shown to permanently
modify the function of physiological systems, such as the stress axis
and the individual trajectory of brain development (Antonelli et al.,
2016; Desplats, 2015; Malter Cohen et al., 2013). Increased activity
of the stress axis leads to elevated cortisol levels and stress sensitiv-
ity. Amongst other effects, increased cortisol levels affect the activity
of neurotransmitters such as serotonin and dopamine (Ventriglio et al.,
2015; Wyrwoll and Holmes, 2012) and thereby increase the risk for psy-
chiatric illnesses, such as autism spectrum disorders, attention deficit
hyperactivity disorder (ADHD), depression, and schizophrenia (Franke
et al., this issue; Rose'meyer, 2013; van den Bergh et al., this issue).
Changes in the trajectory of brain development have previously been
shown by means of several parameters such as brain growth and vol-
ume, neuronal structure and metabolism, and inter-neuronal connectiv-
ity (Antonelli et al., 2016; Buss et al., 2012; Davis et al., 2013; Desplats,
2015; Favaro et al., 2015; Frodl and O'Keane, 2013; Malter Cohen et
al., 2013; Negron-Oyarzo et al., 2016; Pardon and Rattray, 2008; Qiu
et al., 2013; Scheinost et al., 2017). Furthermore, changes in the tra-
jectory of brain development have been found to be associated with al-
tered behavior and cognitive function during the entire lifespan (van
den Bergh et al., this issue), with early cognitive decline in the elderly
(de Rooij et al., 2010), and with increased susceptibility for psychi-
atric and neurodegenerative diseases (Debnath et al., 2015; Faa et al.,
2014). Prenatal stress also leads to reduced adult hippocampal neuro-
genesis (Belnoue et al., 2013), especially during older age (Koehl et al.,
2009). Decreased adult hippocampal neurogenesis is furthermore asso-
ciated with early cognitive decline and neurodegenerative diseases such
as Alzheimer’s disease (AD) (Penazzi et al., 2016; Vivar, 2015). Prena-
tal stress or glucocorticoid exposure also disturbs expression of micro-
tubules and microtubule-associated proteins, which are important for
the formation and maturation of neuronal processes (Antonow-Schlorke
et al., 2003; Penazzi et al., 2016; Schwab et al., 2001). Abnormal forma-
tion of microtubule-associated proteins, for example tau proteins, play
a major role in neurodegenerative diseases, such as AD, Parkinson’s
disease (PD), frontotemporal dementia and other tauopathies (Baird
and Bennett, 2013; Pellegrini et al., 2017; Penazzi et al., 2016; Zhang
et al., 2016). Furthermore, exposure to inappropriately high levels of
cortisol increases susceptibility of neurons to oxidative stress-induced
cell death and increased mitochondrial dysfunction, thus accelerating
cellular aging during later life (Ahlbom et al., 2000; Debnath et al.,
2015; Koehl et al., 2009; Mutsaers and Tofighi, 2012; Simmons, 2012;
Tarry-Adkins and Ozanne, 2014). In addition, depres

sive disorders, for which prenatal stress was shown to increase the risk
(van den Bergh et al., this issue), occur more frequently during older
age and may be associated with accelerated biological aging at the cel-
lular and even various systemic levels (Rizzo et al., 2014b; Sodhi et al.,
2012; Yatham et al., 2009). Taken together, epigenetic changes during
early development represent extremely important determinants of brain
development and aging and for the occurrence of age-related brain dis-
eases (Cao-Lei et al., this issue).

To establish preventive measures for age-related brain diseases, it is
vital to determine and to predict the individual’s status and trajectory
of neuroanatomical and cognitive aging, which is shaped by the interac-
tion between genes, environment and life burden over time (Lopez-Otin
et al., 2013; Rando and Chang, 2012). Those biological parameters were
defined that they “either alone or in some multivariate composite will,
in the absence of disease, better predict functional capability at some
late age, than will chronological age” (Baker and Sprott, 1988). More
specifically, biomarkers of aging have to fulfill several criteria, i.e., it
changes with age, has a high individual specificity, is linked to ba-
sic mechanisms of aging, correlates with aging and age-related disease
(Mather et al., 2011; von Zglinicki and Martin-Ruiz, 2005), has to be
both heritable (Nordfjall et al., 2005; Prescott et al., 2011) and mod-
ifiable by environmental factors (Huda et al., 2007). Similarly to the
development of markers that are aimed to track biophysiological aging
(for a recent review see Jylhava et al., 2017), the development of mark-
ers tracking the state of neuroanatomical and cognitive aging is enjoy-
ing increasing popularity in neuroscience. Determination of the brain
age and cognitive age – as opposed to the chronological age – would
allow to (1) predict individual neurocognitive performance during dif-
ferent stages of live, (2) identify an individual’s health and risk patterns
for age-related brain diseases, (3) identify protective or harmful envi-
ronmental influences on mental health, and (4) apply preventive and in-
terventional strategies that are tailor-made for certain ages (Bocklandt
et al., 2011).

More specifically, existing personalized biomarkers of structural and
functional brain aging either identify deviations from pre-established
reference curves for healthy brain aging or distinguish patients with
brain disorders from healthy controls (Arbabshirani et al., 2017; Cohen
et al., 2011; Gabrieli et al., 2015; Varoquaux and Thirion, 2014). At
the structural level, most of these methods are MRI-based and use
state-of-the-art machine learning techniques to establish the reference
model for a given task (e.g., healthy aging, disease progression) and to
subsequently decode the characteristics of test individuals. At the func-
tional level, cross-sectional studies in different age cohorts and longitu-
dinal studies over restricted time ranges have focused on changing neu-
rocognitive measures across the lifespan, both in childhood and during
older age (Deary et al., 2013; McAvinue et al., 2012). With regards fetal
brain development, neither MR imaging nor neurocognitive assessments
are very feasible. However, fetal behavior, including heart rate patterns
(HRP), is directly controlled by age-related brain activity and follows
a clear maturational trajectory (Nijhuis et al., 1982; Pillai and James,
1990). Thus, non-invasively recorded HRPs have been shown to provide
essential information on fetal functional brain development (Hoyer et
al., 2017).

Importantly and in contrast to common group-based classification
approaches, regression-based predictive analyses aim to predict the val-
ues of continuous variables, such as (regional) brain volume, cognitive,
or neuropsychological characteristics (Cohen et al., 2011). Thus, indi-
vidualized biomarkers of brain development and aging derived from
these regression analyses are able to provide valuable and quantifiable
parameters that offer a broad range of implementations. Examples in-
clude generating reference curves for healthy brain maturation and ag-
ing, predicting individual trajectories of brain development and aging
based on the pre-established reference curves, and disentangling age-
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related changes from disease-related changes in brain structure and
function.

Here, we review the current state of development of biomarkers de-
termining the structural and functional brain age at the single subject
level during different life stages: in the fetal stage, during childhood,
adolescence, adulthood, and old age. First, the two most widely used
molecular markers of general biological age and their potential for pre-
dicting the individual trajectory of brain development and aging are dis-
cussed, i.e. telomere length (Section 2.1) and epigenetic clock (Section
2.2). Then, biomarkers more closely related to brain structure and func-
tion are being discussed, which determine prenatal brain development
and are based on fetal autonomic analysis (Section 3), structural brain
age from childhood into old age, based on MRI (Section 4), and cogni-
tive age in adulthood, based on neurocognitive measures (Section 5).

2. Molecular markers of general biological aging

2.1. Telomere length

An important aspect of individual biological aging is cellular aging.
Telomeres shorten with repeated cell divisions that a cell undergoes dur-
ing its life caused by the incomplete replication of the telomere ends.
Telomeres shorten rapidly in infants after birth and during the first years
of life (Eisenberg, 2011; Lindqvist et al., 2015). Thereafter, the rate of
telomere shortening slows down and remains relatively constant until
it further decreases during old age (Mather et al., 2011; Muezzinler et
al., 2013; Sanders and Newman, 2013). Once telomeres reach a criti-
cally short length, cells are unable to replicate further and DNA cannot
be repaired, triggering a persistent DNA damage response and leading
a cell to enter a state of irreversible proliferate arrest known as cellu-
lar senescence (Campisi and d'Adda di Fagagna, 2007). Cellular senes-
cence has been shown to closely relate to aging and age-related diseases
(Bhatia-Dey et al., 2016; Tacutu et al., 2011). Thus, telomere length
(TL) is a widely discussed indicator of cellular aging (Blackburn, 2000;
Blackburn et al., 2006; Mather et al., 2011). Due to its easy accessibility,
TL in humans has been particularly well studied in leukocytes (LTL). TL
fulfils several criteria for a biomarker of aging, i.e., it changes with age,
has a high individual specificity, is linked to basic mechanisms of ag-
ing, correlates with aging and age-related disease, and is both, heritable
and modifiable by environmental factors (Huda et al., 2007; Mather et
al., 2011; Nordfjall et al., 2005; Prescott et al., 2011; von Zglinicki and
Martin-Ruiz, 2005). Therefore, TL can potentially represent the general
biological age of an individual more precisely than chronological age.

An important characteristic of senescent cells is the increased secre-
tion of pro-inflammatory cytokine, thus causing additional inflamma-
tion and aging (Bhatia-Dey et al., 2016). This property of senescent cells
might be of special consequence in the brain since neurons are particu-
larly sensitive to pro-inflammatory cytokines (Liu, 2014). It is, however,
not clear whether TL in peripheral leukocytes can be used for predicting
the trajectory of brain development and aging.

2.1.1. Telomere length, physical health, and mortality
A high proportion of short telomeres is associated with reduction

in years of healthy living (Njajou et al., 2009) and increased mortality
risk (Bakaysa et al., 2007; Deelen et al., 2014; for review see Eisenberg,
2011; Mather et al., 2011; Muezzinler et al., 2013; Needham et al.,
2015b; Rode et al., 2015; Sanders and Newman, 2013), although causal-
ity has not been demonstrated. It has been repeatedly shown that
on average women have longer telomeres than men (Gardner et al.,
2014; Lapham et al., 2015), which might be related to the increased
longevity seen in women (Barrett and Richardson, 2011; Jylhava et al.,
2017), Additionally, shorter LTL has been linked to age-related somatic

diseases including cardiovascular disease, diabetes, and some types of
cancer (D'Mello et al., 2015; Haycock et al., 2014; Kong et al., 2013;
Scheller Madrid et al., 2016; Weischer et al., 2012; Wentzensen et al.,
2011; Willeit et al., 2014; Zhu et al., 2016), whereas general physical
health was inconclusively related to TL (for review see Mather et al.,
2011). Although TL appears to oscillate over short periods of time, these
variations are less pronounced when long-term follow-up measurements
are carried out (Chen et al., 2011; Svenson et al., 2011).

2.1.2. Telomere length, psychosocial stress and lifestyle factors
TL already shows high intra-individual variation at birth (Takubo et

al., 2002), suggesting that early environmental influences may alter the
trajectory of biological aging (Broer et al., 2013; Eisenberg et al., 2017).
Telomeres are subject to epigenetic influences, like other mediators that
are involved in the association between prenatal stress and health and
disease in later life (Aviv, 2012; Cao-Lei et al., this issue). Consequently,
it has been suggested that programming of cellular aging may represent
a link between adverse intrauterine influences and health during later
life (Entringer et al., 2012). First human studies linked prenatal stress to
shorter TL in the newborn, adolescent and the elderly (Entringer et al.,
2011; Entringer et al., 2013; Marchetto et al., 2016; Rotar et al., 2015).
Childhood psychosocial stress was also associated with shorter TL in pe-
ripheral leukocytes and buccal cells in most of the studies, persisting
over a long-time until older age, thus exemplifying that telomere short-
ening is non-reversible (Blaze et al., 2015; Naess and Kirkengen, 2015;
Puterman et al., 2016). Accumulated adverse experiences in childhood
of any kind further increases the likelihood of having short telomeres
later in life, suggesting that early stressors have additive effects on TL
(Kananen et al., 2010; Puterman et al., 2016). Thus, early-life stress may
have a larger effect on telomere shortening than psychosocial stress dur-
ing adulthood (Puterman et al., 2016; Shalev et al., 2013). Moreover,
the experience of stress is by nature subjective and presumably deter-
mines how these experiences subsequently affect the individual health
(Lindqvist et al., 2015). However, subjective assessments of experienced
stress seem to be more closely related to shorter LTL than an objective
categorization of stress (Epel et al., 2004; O'Donovan et al., 2012). It is
conceivable that stress coping mechanisms might attenuate stress-asso-
ciated cell aging (Biegler et al., 2012), but this occurrence has not been
well studied.

Accelerated LTL shortening can also be induced by a wide range of
lifestyle factors such as smoking, alcohol consumption, low physical ac-
tivity, high body mass index, low socioeconomic status, and a low level
of education, (for review see Lindqvist et al., 2015). The majority of
lifestyle factors may also exert their effects on LTL via oxidative stress
and inflammation, although the effect size is generally weak (Sanders
and Newman, 2013).

2.1.3. Telomere length and psychiatric diseases
Some psychiatric disorders, including schizophrenia and depressive

disorders, are associated with accelerated biological aging and shorter
life expectancy (for an excellent review see Lindqvist et al., 2015) as
well as with an increased risk of neurodegenerative diseases such as
dementia (Rizzo et al., 2014a). However, studies examining an associ-
ation of LTL with psychiatric diseases are inconclusive and character-
ized by a high variability of LTL between individuals and studies (Colpo
et al., 2015; Lindqvist et al., 2015). Although the strongest evidence
for an association between shortened TL and psychiatric disorders is
seen in major depressive disorders (Henje Blom et al., 2015; Lindqvist
et al., 2015), telomere shortening in general seems to be increased in
chronic or severe disease, after longer disease duration, and at an older
age, but does not appear to be related to a specific psychiatric illness
(Kananen et al., 2010; Lindqvist et al., 2015; Needham et al., 2015a).
Comorbidities and confounds, such as age, medication as well as bi-
ological and methodological issues, may possibly explain some of the
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variability in the findings. Furthermore, comorbidities with secondary
psychiatric disorders such as alcohol or substance abuse and confounds
such as age and medication may itself be associated with shortened LTL
(for review see Lindqvist et al., 2015; Pavanello et al., 2011; Yang et al.,
2013). Taken together, present data support the model of accelerated
cellular aging as a theoretical explanation for accelerated biological ag-
ing and lower life expectancy in psychiatric diseases (Colpo et al., 2015;
Lindqvist et al., 2015).

2.1.4. Telomere length, cognitive function and neurodegenerative diseases
Chronological age is the primary risk factor for many neurodegener-

ative diseases, including AD, PD, and frontotemporal dementia. A grow-
ing body of literature shows that TL is associated with the process of
neurodegeneration and has thus been suggested as a biomarker for cog-
nitive aging (for review see Boccardi et al., 2015; Cai et al., 2013; Eitan
et al., 2014; Rizvi et al., 2014). Although some studies showed an associ-
ation between telomere shortening and cognitive impairment (Boccardi
et al., 2015; Insel et al., 2012; Jenkins et al., 2006; Valdes et al., 2010),
results of studies in AD and PD are inconclusive (Boccardi et al., 2015;
Cai et al., 2013; Eitan et al., 2014; Forero et al., 2016a, 2016b; Rizvi
et al., 2014; Zekry et al., 2010a, 2010b). This is surprising since oxida-
tive stress and chronic neuroinflammation play essential roles in AD and
PD pathogenesis, similar as in telomere shortening (for review see Cai
et al., 2013; Tansey and Goldberg, 2010), thus suggesting that oxida-
tive stress-mediated LTL shortening is associated with AD pathogenesis.
Additionally, the interaction between environmental factors and geno-
type may have a specific role in development of AD and TL shortening,
e.g. patients that are homozygous for apolipoprotein E (ApoE)-ε4 are at
an increased risk for developing AD and have significantly shorter LTL
than those, who are heterozygous (Takata et al., 2012). This may be
probably due to the ApoE-ε4 protein being a less efficient antioxidant
than ApoE-ε3 or ApoE-ε2, thus probably inducing higher oxidative stress
in leukocytes of ApoE-ε4 homozygous individuals (Shea et al., 2002).
However, cognitively non-impaired individuals with an increased risk
for developing AD (i.e. ApoE-ε4 positive) did not show a relationship
between LTL or peripheral blood mononuclear cell (PBMC) telomerase
activity and hippocampal volume (Jacobs et al., 2014; Wikgren et al.,
2012). Additionally, a recent meta-analysis could not show that ApoE
genotype was an effect moderator for the relationship between LTL and
hippocampal volume (Nilsonne et al., 2015).

Taken together, it is not yet known whether peripheral telomere
shortening is associated with AD. Further, it is also not clear, whether TL
attrition is causally related to, associated with, or maybe even a conse-
quence of AD. Just as unclear is the potential mechanism linking telom-
ere shortening, amyloid pathology and cognitive impairment. Similarly,
the role of telomere shortening in pre-dementia cognitive aging is un-
known.

2.1.5. Relationship between telomere length in peripheral leukocytes and in
the brain

The discussion on using telomere shortening as biomarker of brain
aging focuses on to what extent LTL is a surrogate marker of cellu-
lar senescence in brain cells, as telomere shortening in neurons might
be restricted to neural stem cells, since mature neurons do not divide
(Ferron et al., 2009). In agreement with that, TL estimation in brain tis-
sue without consideration of the cell type showed only weak correla-
tion with LTL at the single subject level (Dlouha et al., 2014; Lukens
et al., 2009). Also, TL was shown to vary across brain regions, thus
suggesting variable trajectories of cell aging, with hippocampus and
substantia nigra having the longest telomeres and the dorsolateral pre-
frontal cortex having the shortest (Mamdani et al., 2015). Additionally,
TL in brain tissue did not show telomere shortening with age (Takubo
et al., 2010). Furthermore, a heterogeneous picture for cerebral TL and

LTL has been observed in psychiatric and neurodegenerative brain dis-
eases (Mamdani et al., 2015; Szebeni et al., 2014; Zhang et al., 2010).

In agreement with the weak correlation between LTL and TL in brain
tissue, the small number of MRI-based studies, which have been per-
formed in healthy subjects to show brain volume decrease as a mea-
sure of structural brain aging in relation to telomere shortening, did
not find a clear relationship between LTL or PBMC telomerase activity
and brain volume (Lindqvist et al., 2015). In accordance with that, the
most important population-based study by King et al. (2014) including
the largest sample by far with almost 2000 participants, associations be-
tween shorter LTL and hippocampus, region-specific, total cerebral and
white matter volumes were only small (King et al., 2014). Similarly, an-
other study in non-demented subjects also found shorter LTL being as-
sociated with subcortical volume atrophy (Wikgren et al., 2014).

While AD patients tend to show shorter LTL, only one study con-
ducted in a small number of subjects found evidence of telomere ero-
sion in the AD hippocampus (Franco et al., 2006). In contrast, in an-
other study, telomeres were even longer in hippocampal cells of human
AD brains compared to controls, although LTL was shortened (Thomas
et al., 2008). A third study showed that TL in the cerebellum of AD pa-
tients was similar to that in peripheral leukocytes (Lukens et al., 2009).
Thus, even when exclusively examining psychiatric and neurodegener-
ative diseases, the evidence for an association between peripheral and
central telomere erosion and accelerated brain aging is inconclusive.

2.1.6. Integrative perspective on telomere length
In conclusion, shorter LTL in general seems to be associated with

increasing age, although correlation coefficients are mostly pretty low.
Inconsistent study results may be explained by biological and method-
ological factors, such as study design, differences amongst study popu-
lations, and methods of measurement. Moreover, it still remains unclear
whether TL is a biomarker of aging for the whole organism – or a bio-
marker of aging in specific tissues. Indeed, the widely conflicting results
on the value of TL as a biomarker of aging have produced more ques-
tions than answers.

Thus far, it has been assumed that peripheral TL erosion is related
to life-long cellular proliferative activity as well as to pathophysiologi-
cal processes, which are common during aging and present in most of
age-related diseases, e.g. inflammatory and oxidative stress. However,
the relationship between TL erosion and aging has been dispelled by the
fact that telomeres do not need to become critically short in order to
elicit cellular senescence (Rossiello et al., 2014). Another major problem
is the high variability of TL between individuals (Takubo et al., 2002),
with TL been found to already vary at birth, depending on genetic, epi-
genetic, and early environmental factors. In addition, the normal rate of
telomere shortening and its biological variance is still unclear. Several
factors, such as stress, lifestyle, and therapy, can modulate TL and the
rate of telomere shortening. It remains uncertain, whether such modula-
tion really changes the trajectory of aging or obscures any relationship
between TL and biological aging (Gomes et al., 2011).

In contrast to the progress that has been made on the use of TL as an
estimate for the general biological age, there is less clarity regarding the
use of LTL as a reliable biomarker of brain age in particular. Similarly,
no reliable conclusions can be drawn at present with regard to LTL as a
biomarker for accelerated brain aging in general as well as in neurode-
generative diseases. Studies possibly need to focus more on aging phe-
notypes than on disease diagnoses. Moreover, the unknown relationship
of LTL to TL in brain tissue or other central cell aging markers depicts
another major limitation in interpreting existing study results.

In line with the current state of knowledge in the field, the inconsis-
tent study base, and existing results, which lack to show age-associated
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“normal ranges” for LTL, a recent study did not show any association
between TL and MRI-based brain age (Cole et al., 2017c). Consequently,
much more basic research is needed to acquire a better understanding
of whether LTL shortening is associative to or plays a causal role in ac-
celerated brain aging during normal aging and in brain-related diseases,
before LTL might be used as an efficient biomarker for brain aging in
future. Further, clinical studies associating peripheral TL with pheno-
typic markers of brain structure and function are needed, including var-
ious forms of neuroimaging and cognitive testing. In future, longitudinal
designs will allow investigations into whether LTL shortening precedes
brain atrophy, or vice versa. Moreover, studies will need to focus on ag-
ing phenotypes, in addition to disease diagnoses.

2.2. Epigenetic clock

The epigenetic clock, i.e. the DNA methylation age (DNAmAge), has
been recently identified as a feasible predictor for biological age (for
a review see Jylhava et al., 2017). The most popular clock measures
show high age correlations and small mean deviations from chrono-
logical age. The Horvath’s clock is a multi-tissue predictor based on
methylation levels of 353 CpG sites and was developed in a sample of
n = 8000, aged 0–101 years, resulting in r = 0.96 and a median ab-
solute error of 3.6 years for age prediction (Horvath, 2013). The Han-
num’s clock uses whole blood samples and is based on only 71 CpG
sites and was developed in a sample of n = 656, aged 19–101 years, re-
sulting in r = 0.91 and a root mean squared error (RMSE) of 4.9 years
(Hannum et al., 2013). In independent studies, the correlations between
both clocks vary from fairly strong (r = 0.76; Chen et al., 2016) to
moderate (r = 0.37; Belsky et al., 2016). Observations of men having
higher epigenetic ages compared to women are consistent across studies
(Hannum et al., 2013; Horvath, 2013; Horvath and Ritz, 2015; Jylhava
et al., 2017; Marioni et al., 2016; Marioni et al., 2015a).

2.2.1. Epigenetic age and mortality
In a recent meta-analysis the epigenetic clock showed its ability to

predict mortality independent of common risk factors such as age, body
mass index (BMI), education, physical activity, alcohol use, and smok-
ing, with epigenetic age estimates incorporating Hannum’s clock mea-
sures based on blood cell counts outperforming other clock measures
in terms of statistically significant associations with all-cause mortality
(Chen et al., 2016).

Epigenetic age based on Hannum’s clock was a strong predictor for
cancer incidence and cancer-related mortality, with results suggesting a
dose-responsive relationship between epigenetic age measured in blood,
cancer incidence, and mortality: for each one-year increase in the differ-
ence between chronological and epigenetic age, risk of developing can-
cer within three years was increased by 6% and risk of dying of cancer
within the next five years was increased by 17% (Zheng et al., 2016).
Another study showed better prediction results for all-cause, cancer-re-
lated, and cardiovascular-related mortality for epigenetic age based on
Horvath’s clock (Perna et al., 2016), However, longitudinal studies are
needed to evaluate the predictive value of the epigenetic age over time
(Jylhava et al., 2017).

2.2.2. Epigenetic age, individual health, and cognition
Epigenetic age based on Horvath's clock in blood cells was also

shown to be associated with poorer cognitive and physical fitness in
the Lothian Birth Cohort 1936 at age 70 years, but did not predict the
rate of change in cognitive and physical fitness during the 6-year fol-
low-up (Marioni et al., 2015b). Also, age-related frailty index – mea-
sured as deficits in multiple bodily systems – was found to be directly
associated with the Horvath clock in old age (Breitling et al., 2016). In
a study with participants aged 25–85 years, a moderate correlation be

tween BMI and epigenetic age acceleration could only be observed in
liver tissue, but not in blood, muscle, and adipose tissue. The authors
reported an epigenetic age increase by 3.3 years for each 10 BMI units
(Horvath et al., 2014). In another study including participants aged
30–100 years, epigenetic ages based on Horvath’s as well as Hannum’s
clock were associated with an increase in BMI and with indicators of
diabetes and the metabolic syndrome. However, protective effects of
healthy diet, physical exercise, and higher education were only ob-
served for epigenetic age based on Hannum’s clock (Quach et al., 2017).
Furthermore, HIV as well as Down Syndrome (DS), Huntington’s disease
(HD), Parkinson’s disease were recently found to lead to significantly in-
creases in epigenetic age of brain tissue (HIV: 7.4 years; DS: 11.5 years;
HD: 3.2 years), blood (HIV: 5.2 years; DS: 4.6 years), or a combination
of brain tissue and blood (DS: 6.6 years) (Horvath et al., 2015; Horvath
et al., 2016b; Horvath and Levine, 2015; Horvath and Ritz, 2015). The
authors suggest the observed accelerated aging effects in blood may re-
flect changes in blood cell composition, but give no conclusive explana-
tion of the observed accelerated aging effects in brain tissue.

In a sample of non-demented participants, aged 63–102 years, epige-
netic age at death derived from Horvath's clock in postmortem extracted
brain cells (specifically, the dorsolateral prefrontal cortex) no associa-
tion to cognitive functioning and memory up to 16 years before death
(mean study time: 4 years) was found (Levine et al., 2015). The authors
suggest that the lack of findings might reflect the relatively low variance
of cognitive measures among non-demented controls. In middle-aged
adults, increased blood-based Hannum's clock, but not Horvath's, was
associated with poorer cognitive and physical fitness, health, and fa-
cial aging (Belsky et al., 2016), whereas another study in middle-aged
monocygotic twins did not find associations between blood-based epi-
genetic age and cognitive functioning (Starnawska et al., 2017).

Thus, it seems that the epigenetic clock can indeed reflect aging in
different bio-physiological domains and across a wide age range, but as-
sociations to cognitive domains are inconsistent (Jylhava et al., 2017).

2.2.3. Epigenetic age and neurodegenerative diseases
In longitudinally followed up AD patients (mean follow-up: 4 years),

increased epigenetic age at death as derived from Horvath's clock in
postmortem extracted brain cells (i.e. dorsolateral prefrontal cortex) was
associated with a decline in global cognitive functioning, episodic mem-
ory and working memory in the years before death, as well as post-
mortem presence of plaques and amyloid load (Levine et al., 2015).

In PD patients, aged 37–91 years (mean ca. 70 years), epigenetic age
of the immune system was significantly increased (Horvath and Ritz,
2015). It was thus concluded, that these results support the hypothesis
of peripheral immuno-inflammatory characteristics, observed as accel-
erated aging of blood cells, being involved in PD (Jylhava et al., 2017).

2.2.4. Integrative perspective on the epigenetic clock
In contrast to other molecular markers such as TL, cellular ageing,

as measured by the epigenetic clock, moderately to strongly correlate
with chronological age, regardless of tissue types. The epigenetic age
was also shown to predict all-cause mortality, cancer- and cardiovascu-
lar-related mortality, as well as to correlate with cognitive and physi-
cal fitness in the elderly, and being able to detect accelerated ageing
induced by various factors including obesity, Down syndrome, and HIV
infection (for reviews see Gibbs, 2014; Lowe et al., 2016).

To date, it is not entirely clear which aspects of cellular aging the
epigenetic clock represent. It is most probably not purely a mitotic
clock, since aging has also been shown to be traceable in non-prolifera
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tive tissue such as brain (Jylhava et al., 2017). However, rates in epige-
netic aging in several tissues were found to differ from one another. It
was suggested that epigenetic aging is an intrinsic property of the cells,
probably a function of the epigenetic maintenance system, which is un-
coupled from cell senescence per se (Horvath, 2013; Lowe et al., 2016).
Additionally, it has been suggested that the intrinsic Horvath clock is
representing overall frailty in the body, whereas the Hannum’s clock
may be closer related to immune responses (Horvath and Ritz, 2015;
Jylhava et al., 2017).

With regards to other biomarkers, correlations between epigenetic
age and TL and other clinical measures have generally been low or
non-significant, but were suggested to be associated with age and mor-
tality independent of each other (Belsky et al., 2016; Breitling et al.,
2016; Jylhava et al., 2017; Marioni et al., 2016). In addition, the
cell-type adjusted Horvath clock has been found to be not associated
with common disease risk factors such as alcohol use, smoking, dia-
betes, hypertension, and the levels of high- and low density lipoproteins,
insulin, glucose, triglycerides, C-reactive protein (CRP) and creatinine
(Horvath et al., 2016a; Jylhava et al., 2017). Furthermore, with regards
to cognitive functioning and neurodegenerative diseases, associations
were thus far only found in postmortem brain tissue, but not in blood
samples. Thus, the epigenetic clock is actually not suitable to serve as an
in vivo biomarker for aging of brain structure and function. This is sup-
ported by a recent study that showed no association between epigenetic
age and MRI-based brain age (Cole et al., 2017c).

3. A biomarker for fetal brain development

3.1. Autonomous activity as functional marker of fetal brain development

Aberrations of fetal brain development may not only influence cog-
nitive ability during the entire life span but may also alter the trajec-
tory of brain aging. They are often induced by environmental challenges
such as stress or insufficient fetal nutrient supply (Antonelli et al., 2016;
Desplats, 2015; Malter Cohen et al., 2013). Since these challenges are
preventable, biomarkers for early aberrations of functional fetal brain
development are highly desirable to allow the development and imple-
mentation of early preventive or interventional measures. However, the
assessment of fetal brain development poses a challenge. At the struc-
tural level, only large structural disturbances in brain development such
as a hydrocephalus are detectable using MRI. At the functional level,
fetal brain activity is assessable by means of magnetoencephalograpy
(MEG) but only averaged evoked responses are detectable due to the
small signal amplitude (Kiefer et al., 2008). More appropriate for clin-
ical application is the activity of the autonomic nervous system (ANS),
which is associated with the majority of physiological control mecha-
nisms. The functioning of fetal ANS is mainly reflected in the noninva-
sively recorded heart rate patterns (HRP), which also provides essential
information on fetal functional brain development (Hoyer et al., 2017).
Fetal behavior such as body movements, eye movements, and HRP is di-
rectly controlled by brain activity and follows a clear maturational tra-
jectory (Nijhuis et al., 1982; Pillai and James, 1990).

A more sophisticated understanding of how physiological develop-
mental principles are reflected in fetal behavior might improve the as-
sessment of individual (brain) development. During the ontogenetic pe-
riod, the development of an organism is based on its genetic code as
well as on environmental influences and follows principles of self-or-
ganization and adaptation (Fig. 1). Those principles are universal in
open non-equilibrium systems in non-living and living natural systems
(Bertalanffy, 1968; Kauffman, 1993; Nicolis and Prigogine, 1977). Con-
sequently, they may also have implications for the epigenetic processes
involved in fetal programming (Provenzi et al., 2016). In physiologi-
cal systems, these universal developmental characteristics are increasing
fluctuation amplitudes, increasing complexity, and pattern formation.
They clearly coincide with fetal HRP during the course of fetal develop-
ment (Hoyer et al., 2009; Hoyer et al., 2013; Van Leeuwen et al., 1999).

According to the “developmental origins of adult disease (Barker)
hypothesis” (Barker, 1998), early identification of aberrations in fetal
brain development is the base for timely interventions when the condi-
tion is still reversible. An altered trajectory of brain development is as-
sociated with an altered maturation of the brain-derived stress system
(Charil et al., 2010). The stress system with its two branches, the hy-
pothalamo-pituitary-adrenal (HPA)-axis and the ANS, is highly suscep-
tible to early environmental influences such as prenatal stress or mal-
nutrition (Antonelli et al., 2016; Desplats, 2015; Malter Cohen et al.,
2013). Developmental programming of the activity of the stress system
may predispose for aberrations in neurocognitive function and stress-as-
sociated diseases such as ADHD and depression (Franke et al., this issue;
Rose'meyer, 2013; van den Bergh et al., this issue). Changes in the activ-
ity of the HPA axis and the ANS following prenatal stress (Dodic et al.,
2002; Rakers et al., 2013; Shaltout et al., 2011) or malnutrition (Frasch
et al., 2007; Hawkins et al., 1999; Nijland et al., 2010) are already de-
tectable during fetal life. Notably, activity of the ANS influences HRP
(Electrophysiology, 1996). Since the heart rate is one of the few physi-
ological parameters that can be obtained non-invasively from the fetus,
HRP analysis is uniquely suited to assess fetal functional brain develop-
ment and its aberrations (Thayer et al., 2012). Such analyses are of ma-
jor interest to assess the trajectory of functional brain development and
pathophysiological disturbances.

Fetal HRP, as an index of the autonomic (neuro-vegetative) brain ac-
tivity, reflect the instantaneous autonomic control of various organ sys-
tems depending on the behavioral state and individual characteristics
such as the maturational state of the ANS and developmental aberra-
tions (Kouskouti et al., 2017). HRP can be monitored starting at around
15 weeks of gestational age (wG) in the prenatal period and subse-
quently over the entire life span (Electrophysiology, 1996). Heart rate
variability (HRV) increases continuously during the prenatal and subse-
quent postnatal period. During most of childhood, HRV is found to in-
crease as well, and thereafter it decreases from about 20 years of age.

After about 30 wG periods of active and quiet behavior can be dis-
tinguished (Nijhuis et al., 1982), leading to fully developed states of
sleep and wakefulness in the postnatal period. The high level of agree-
ment between HRP and a comprehensive sleep state classification tak

Fig. 1. Ontogenetic development is dependent on internal (fetal) and environmental (maternal) influences. The behavior of the phenotype can be assessed from the behavior of order
parameters such as heart rate patterns.
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ing the electroencephalogram, eye movements and body movements
into consideration allows a sufficient behavioral state classification only
via HRP analysis already in the prenatal period (Nijhuis et al., 1982).
While vagal rhythms modulate HRV predominantly during quiet sleep
in the fetus, heart rate accelerations of increasing amplitude and dura-
tion that mainly reflect maturational increase of sympathetic autonomic
activity typically evolve during active sleep (Nijhuis et al., 1982; Pillai
and James, 1990). To capture different sleep and behavioral states, a
typical HRP recording period needs to last 30 for min, as shown in Fig.
2 (Hoyer et al., 2017).

From the established ultrasound-based cardiotocography (CTG), it is
known that fetal heart rate fluctuations increase during the course of
pregnancy, and that heart rate deceleration (DC) patterns which are pre-
dominant at an earlier gestational age, i.e. at about before 32 wG are
replaced by heart rate acceleration (AC) patterns during late pregnancy
(DiPietro et al., 1996). In contrast to CTG technology that does not al-
low for the identification of individual heartbeats, fetal magnetocardio-
graphy (fMCG) allows a beat-precise HRV analysis from about 15 wG
onwards. Although fetal electrocardiography (fECG) gives more or less
corresponding recordings, the signal quality is lower. In particular there
is a gap at 28–32 wG when the fetus is almost completely covered and
electrically isolated by the vernix caseosa (Hoyer et al., 2017). Those
signals reflect the increasing stability and regulatory capacity of the car-
diac pacemaker as well as the developing vagal and sympathetic ner-
vous system and autonomic control.

HRV frequency bands can be assigned to vagal and sympathetic
heart rate modulations in a simple linear manner (David et al., 2007).
This linear approach of frequency band analysis is a fundamental restric-
tion that neglects the interdependencies between different rhythms such
as between vagal and sympathetic activity. Newer approaches, which
provide valuable additional information on these physiological interre-
lationships and behavioral patterns, are more appropriate for the com-
plex nonlinear physiological system. In MCG recordings from about 15
wG onwards, the amplitude of fetal heart rate fluctuations of all fre-
quency bands and the complexity of fetal heart rate fluctuations contin-
uously increase and saturate in the last weeks before term (Van Leeuwen
et al., 2003; Van Leeuwen et al., 1999).

The developmental characteristics mentioned above support their
usage in a functional fetal autonomic brain age score. HRV indices of

fluctuation amplitude, complexity of sympatho-vagal rhythms, and pat-
tern formation (skewness, baseline stability) were used in multivariate
regression models that predict the functional maturation age (Hoyer et
al., 2014; Hoyer et al., 2013). Models for 30 min recordings without a
fetal behavioral state specification, as well as those for 10 min sections
of quiet sleep and active sleep were fitted to predict the maturation
age of 364 normal cases (20–40 wG) from the Jena Fetal Monitoring
Data Base. Functional fetal autonomic brain age score was subsequently
validated in external data bases, namely in 322 fetal MCG recordings
(15–40 wG) from the Grönemeyer Institute of Microtherapy, Bochum,
Germany (Hoyer et al., 2015), and in 358 CTG recordings (24–40 wG)
from the Hospital de S. João, University Porto, Portugal (Hoyer et al.,
2017) in the respective overlapping ranges of wG. From these studies,
we summarize with respect to a precise fetal functional brain age assess-
ment: (i) the design of the functional fetal autonomic brain age score
was confirmed across study centers and recording technology with low
loss of precision, (ii) recordings over 30 min are necessary for an ap-
propriate consideration of behavioral statistics, (iii) the individual fetal
beat detection and a low error rate mainly determine the precision of
the developmental age assessment. In fetuses suffering from intrauter-
ine growth restriction (IUGR), HRV amplitude (i.e., sort term variation,
STV) and complexity are reduced (Ferrario et al., 2009; Nijhuis et al.,
2000). All STV values of the IUGR group were below the median of
the normal group nomogram and were distributed around the 2.5 per-
centile. Functional fetal autonomic brain age score values of IUGR fe-
tuses were found reduced both in the Jena and the Bochum MCG study
centers mentioned above (Hoyer et al., 2015; Hoyer et al., 2013), as
shown for the Jena data set in Fig. 3 in data neglecting the fetal sleep
state.

We conclude that universal developmental characteristics are re-
flected in HRP during the course of prenatal development. They al-
low an evaluation of the functional maturation age of autonomic func-
tion as well as developmental disturbances. The standard error of au-
tonomic brain age assessment in healthy fetuses older than 15 wG is
below 3 wG, which is smaller than the reduction of values assessed in
IUGR fetuses (Hoyer et al., 2013). The analysis of further clinical data
of fetal stress is pending. The main limitations for a direct assessment
of the developmental age of the fetal brain include the high cost and

Fig. 2. Fetal tachograms, instantaneous heart rate (HR) over 4000 beats (about 30 min) in dependence on week of gestational age (wG). At 26 wG, heart rate DC (see drops e.g. around
beat number 550) dominate, at 30 wG small DC and AC appear, at 34 wG, typical DC no longer appear but clear AC of increasing amplitude dominate (see peaks e.g. around beat number
900, at 38 wG, an active sleep state with distinct AC up to about beat number 2800 is shown followed by a period of quiet sleep characterized by a period of mainly absent AC.
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Fig. 3. Functional fetal autonomic brain age score values of 30 min fMCG recordings of a
normal population and the reduced values of an IUGR group (Details according to Hoyer
et al., 2013).

local setting of fMCG devices. Furthermore, cross validation studies on
different HRV indices and fetal developmental disturbances are lacking.
In contrast, fetal routine CTG is standardized for intrapartum fetal mon-
itoring. And consequently, knowledge and dissemination structures ex-
ist with respect to the early identification of developmental problems of
fetuses based on HRV indices. Further optimization and complimentary
validation of HRV indices across fMCG, fECG, and CTG technologies and
their relationship to developmental disturbances is currently the subject
of international research. Yet the present results of selected applications
already indicate the potential for the early identification of developmen-
tal disturbances, which might have implications for improving prenatal
care in clinical practice.

4. MRI-based biomarkers for structural brain development and
aging

4.1. MRI-based markers

Changes in brain structure throughout the lifespan have multidimen-
sional aspects, which can be covered and quantified by several MRI
modalities, realized by using diverse MR pulse sequences and proto-
cols as well as a variety of analytical techniques for processing MRI
data. These data may result in several different markers for the indi-
vidual brain structure that are sensitive to and capture shared as well
as marker-specific information on (age-related) brain tissue changes
(Cherubini et al., 2016; Groves et al., 2012). The most widely used
modality is T1-weighted MRI, providing a number of parameters, in-
cluding voxel-wise, regional and global gray matter (GM) and white
matter (WM) volumes, volumetric data for subcortical regions, cortical
thickness, and cortical surface area. Complementary measures of indi-
vidual brain characteristics provide information about the myelin con-
tent and white matter integrity in regions of interest (ROIs) and fiber
tracts (from T2-weighted MRI), the mineralization of subcortical nuclei
(from T2* relaxometry), and information about fiber density, axonal di-
ameter, myelination in white matter, as well as several measures of wa-
ter diffusion in brain tissue (from diffusion tensor imaging; DTI). For
a short overview of the different modalities and resulting parameters
please refer to Table 1.

4.2. Modeling structural brain development and aging

A growing body of research uses high-dimensional neuroimaging
data, often including several hundred (multi-modal) parameters per in-
dividual, and employing supervised, linear or non-linear pattern recog

Table 1
Overview of modalities and derived parameters used for brain age prediction in this review.

Model Tool Modality Parameter Explanation

Structural
brain age

MRI (magnetic
resonance imaging)

T1-weigthed GM Gray matter volume/density throughout the brain (per voxel, region, or global)

WM White matter volume/density throughout the brain (per voxel, region, or global)
Subcortical
volumes

Volumetric data for subcortical regions

Cortical
thickness

Thickness of cortical gray matter

Cortical surface
area

Expansion of area of cerebral cortex surface

T2-weighted Signal
intensities

Signal intensity in white matter regions and fiber tracts, associated with myelin
content and white matter integrity; recognizing white matter hyperintensities

T2*
relaxometry

R2* (relaxation
rates)

Reflecting mineralization of the subcortical nuclei

DTI (diffusion
tensor
imaging)

FA (fractional
anisotropy)

Presence of preferred direction of diffusion (i.e. tissue anisotropy), reflecting fiber
density, axonal diameter, and myelination in white matter

MD (mean
diffusivity)

Amount of all isotropic diffusion (i.e. not bounded by membranes), measuring the
average molecular motion independent of any tissue directionality

AD (axial
diffusivity)

Amount of isotropic diffusion along direction of maximal diffusion

RD (radial
diffusivity)

Amount of isotropic diffusion perpendicular to direction of maximal diffusion

DWI (diffusion
weighted
imaging)

ADC (apparent
diffusion
coefficient)

Amount of diffusion along applied gradient direction, reflecting magnitude of
diffusion (of water molecules) within tissue

Fetal
brain age

MCG
(magnetocardiography)

Fetal HRP
(heart rate
patterns)

DC-AC
development

Change in deceleration (DC) & acceleration (AC) patterns

Cognitive
brain age

TVA (theory of visual
attention)

Perceptual threshold

Processing speed Rate of information uptake (i.e., numbers of elements processed per sec)
VSTM storage capacity Storage capacity in visual short-term memory
VSTM processing rate Processing rate in visual short-term memory
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nition techniques in order to depict and quantify structural brain de-
velopment and aging across the lifespan. In contrast to univariate ap-
proaches, multivariate analyses of individual brain structure are capable
of detecting and quantifying subtle and widespread deviations in region-
or voxelwise brain structure throughout the whole brain for a given age
(for a recent opinion paper please see Cole and Franke, 2017).

In general, an age prediction model needs to be trained first in order
to subsequently assess a person’s individual brain age. The age predic-
tion model is generated by recognizing multivariate patterns of age-typ-
ical brain structure and parameters based on (multi-modal) MRI data
from a (large) sample of cognitively healthy subjects. Subsequently, the
age prediction model is applied in previously unseen test subjects, esti-
mating the individual brain ages based on their (multi-modal) MRI data.
The difference between a person’s estimated brain age and chronologi-
cal age finally identifies individuals deviating from the typical brain de-
velopment and/or aging trajectory.

A growing number of non-invasive MRI-based brain age biomarkers
have recently been introduced. These biomarkers reliably and validly
model healthy brain development (Section 4.3) and aging (Section 4.4),
integrating and/or comparing different (i) types of neuroimaging data,
(ii) image pre-processing pipelines, (iii) feature selection techniques,
and (iv) pattern recognition algorithms. In order to generate and vali-
date the brain age model, most of the studies employ a “cross-valida-
tion” approach, i.e., the neuroimaging parameters of a large proportion
of the reference sample of healthy individuals is used to generate the
brain age model first. The generated brain age model is then applied to
the smaller proportion of the reference sample that was not included in
model generation (i.e., “left-out”), in order to predict individual brain
ages based on the neuroimaging parameters. This procedure is repeated
multiple times, until an individual brain age is provided for each subject
in the reference sample. Some of the studies described in this review ad-
ditionally include independent test samples of healthy and clinical sub-
jects and even MRI scanners, in order to prove the generalizability of the
pre-established brain age model across different samples, and for broad
application in a clinical context, respectively.

The total number of subjects used to generate a brain age model
has recently been identified as the single most important factor driving
prediction accuracy (Franke et al., 2010). Although most of the stud-
ies generating models for healthy brain development and aging utilize
large and often publicly available study samples, the specific composi-
tions of the samples and number of subjects used to generate the brain
age models differ between studies, which complicates comparison of the
prediction accuracy and results between the different models. To eval-
uate the various studies with regard to prediction accuracy, practical-
ity in further research and clinical contexts, and generalizability, we re-
port all available data on the samples used to generate and validate the
different brain age models, i.e., the age ranges covered, the number of
MRI scanners used (incl. field strengths), the MRI modalities and para-
meters acquired, the mathematical algorithms adopted to model healthy
brain development and aging, the cross-validation plans applied to test
the algorithm, as well as several measures for the accuracy of brain age
predictions, including Pearson’s correlation coefficients (r) between in-
dividual brain age and chronological age, mean absolute error (MAE),
and root mean squared error (RMSE):
MAE = 1/n * ∑⁠i |BA⁠i − CA⁠i|, (1)

RMSE = [1/n * ∑⁠i (BA⁠i’ − CA⁠i)⁠2]⁠1/2, (2)
with n being the number of subjects in the test sample, BA⁠i the sub-

ject’s predicted brain age, and CA⁠i the subject’s chronological age.

4.3. Review of studies predicting brain age during development

To our knowledge, seven studies establishing models for brain devel-
opment covering age ranges between early childhood and young adult-
hood have been published so far (Table 2; Brown et al., 2012; Cao
et al., 2015; Dosenbach et al., 2010; Erus et al., 2015; Franke et al.,
2012b; Khundrakpam et al., 2015; Wang et al., 2014). Accuracies for
brain age predictions derived from cross-validation in the whole refer-
ence sample of healthy subjects ranged from r = 0.43–0.96 and MAEs
from 1.03–1.95 years.

The most accurate model for brain age prediction during develop-
ment in healthy individuals aged 3–20 years used a number of parame-
ters derived from different MRI modalities (i.e., T1, T2, DTI), including
cortical thickness, cortical surface area, subcortical volumes, apparent
diffusion coefficient, fractional anisotropy, and T2 signal intensities in
predefined subcortical regions, applying a regularized multivariate nonlin-
ear regression-like approach with leave-one-out cross-validation, resulting
in r = 0.96 and MAE = 1.03 years (Brown et al., 2012). Although each
single MRI modality showed similar predictive power (r ≈ 0.9) across
the full age range (i.e., 3–20 years), modality-specific contributions to
the generation of the brain age model differed across neuroanatomi-
cal structures and age sub-ranges: “At the youngest ages, from about
3–11 years old, measures of T2 signal intensity within subcortical ROIs
were by far the strongest predictors of developmental phase, declin-
ing in importance through the early teens. Diffusion measures within
white matter fiber tracts, in comparison, were consistently strong pre-
dictors across the age range, becoming the highest contributor dur-
ing the middle ages of about 12–15. T1-derived morphological mea-
sures varied, with cortical thickness and subcortical volumes contribut-
ing more than cortical area, which was consistently the weakest predic-
tor over age. Interestingly, diffusivity measures within subcortical ROIs
increased sharply at about age 14 and were the strongest maturational
predictors at the oldest ages, from about 17–20 years old.” (Brown et
al., 2012, p. 3). Additionally, modality-specific subsets showed worse
prediction accuracies compared to the combined model (T1 subset:
r = 0.91, MAE = 1.71 years; T2 subset: r = 0.91, MAE = 1.60 years;
DTI subset: r = 0.90, MAE = 1.71 years). Erus et al. (2015) also used
a number of parameters derived from different MRI modalities (i.e.,
T1, DTI), generating and testing their brain age model by utilizing lin-
ear support vector regression (SVR) with 10-fold cross-validation in a sam-
ple of healthy individuals aged 8–22 years. Again, the combined model
(r = 0.89, MAE = 1.22 years) proved to be more accurate than sin-
gle parameter measures (i.e., apparent diffusion coefficient: r = 0.85,
MAE = 1.35 years; fractional anisotropy: r = 0.83, MAE = 1.41 years;
GM: r = 0.81, MAE = 1.52 years; WM: r = 0.76, MAE = 1.71 years;
CSF: r = 0.43, MAE = 2.71 years). However, both studies did not in-
corporate an independent test sample to prove generalizability of the
generated brain age model.

Using only a single MRI modality, the most accurate model utilized
voxelwise GM and WM volume derived from T1-weighted MRI, generat-
ing and testing their brain age model by utilizing linear relevance vector
regression (RVR) with leave-one-out cross-validation in a sample of healthy
individuals aged 5–19 years, resulting in r = 0.93, MAE = 1.2 years
(Franke et al., 2012b). Furthermore, it outperformed all other brain
age models using only a single MRI modality or single-modality sub-
sets, and additionally proved sufficient generalizability across different
scanners and even across studies, utilizing two independent test samples
(r = 0.89, MAE = 0.5 years & r = 0.75, MAE = 1.1 years).
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Table 2
Models for brain maturation in infants and adolescents using non-invasive structural markers.

Study
Training sample (healthy
subjects) Independent test sample

MRI training
[no of
scanners]/MRI
test [no of
scanners] Modalities

Quantitative
parameters
used for
brain age
modeling

Algorithm
for age
modeling

Train-
Test split
for
validation

Prediction
performance in
training sample

Prediction performance in
test sample

No
[female]

Age
mean ± SD
(yrs) [range]

No
[female]

Age
mean ± SD
(yrs) [range] r

MAE
(yrs) r

MAE
(yrs)

Brown et al.
(2012) ⁠a

885
(48%)

3–20
(13.0 ± 4.9)

– 3T [12] T1, T2,
DTI

Cortical
thickness,
cortical area,
subcortical
volumes,
diffusivity
(tracts),
diffusivity
(ROIs), signal
intensity
(tracts),
signal
intensity
(ROIs)⁠b

Multivariate
non-linear
regression

LOO 0.96⁠b 1.03⁠b –

T1 subset
(cortical
thickness,
cortical area,
subcortical
volumes)

0.91 1.71

T2 subset
(signal
intensity in
tracts &
ROIs)

0.91 1.60

DTI model
(diffusivity in
tracts &
ROIs)

0.90 1.71

Cao et al.
(2015) ⁠a

303
(53%)

5–18
(11.2 ± 3.8)

115
(53%)⁠c

7–18
(12.1 ± 3.1)

1.5T [6]/1.5T
[6]⁠(same)

T1 GMV per
region
(cortical &
subcortical)

Multivariate
linear
regression
(LASSO)

LOO 0.82 1.69 0.83 1.71

Dosenbach et
al. (2010)

238
(48%)⁠d

7–30
(18.2 ± 6.7)⁠e

195
(52%)⁠d

7–31
(16.4 ± 7.1)⁠e

3T [1]/ 1.5T
[1]

rs-fcMRI Functional
connectivity
maps
(derived
from resting
state BOLD
time courses
for 160 ROIs)

Linear SVR LOO 0.74 – 0.72 –

186
(53%)⁠d

6–35
(15.3 ± 6.6)⁠e

1.5T [1] – 0.75 –

Erus et al.
(2015) ⁠a

621
(56%)

8–22
(15.1 ± 3.3)

– 3T [1] T1, DWI,
DTI

RAVENS
maps for GM,
WM, VN;
voxelwise
maps for
ADC & FA⁠f

Linear SVR 10-fold
CV

0.89⁠f 1.22⁠f –
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Table 2 (Continued)

Study
Training sample (healthy
subjects) Independent test sample

MRI training
[no of
scanners]/MRI
test [no of
scanners] Modalities

Quantitative
parameters
used for
brain age
modeling

Algorithm
for age
modeling

Train-
Test split
for
validation

Prediction
performance in
training sample

Prediction performance in
test sample

No
[female]

Age
mean ± SD
(yrs) [range]

No
[female]

Age
mean ± SD
(yrs) [range] r

MAE
(yrs) r

MAE
(yrs)

ADC 0.85 1.35
FA 0.83 1.41
GM 0.81 1.52
WM 0.76 1.71
VN 0.43 2.71

Franke et al.
(2012a,
2012b)⁠a⁠,⁠g

394
(47%)

5–19
(10.7 ± 3.8)⁠e

10/15⁠h 12–16
(14.5 ± 1.5)

1.5T [6]/1.5T
[1] ⁠(diff.)

T1 Concatenated
GMV & WMV
(voxelwise)

Linear RVR LOO 0.93 1.2 0.89/0.75 ⁠h 0.5/1.1⁠h

341 5–19
(10.7 ± 3.8)⁠e

53 5–18
(10.7 ± 4.0)

1.5T [5]/1.5T
[1] ⁠(diff.)

– 0.95 1.1

318 5–19
(10.7 ± 3.8)⁠e

76 5–18
(10.5 ± 3.8)

1.5T [5]/1.5T
[1] ⁠(diff.)

0.92 1.2

323 5–19
(10.5 ± 3.7)⁠e

71 5–19
(11.8 ± 4.1)

1.5T [5]/1.5T
[1] ⁠(diff.)

0.92 1.3

319 5–19
(10.7 ± 3.7)⁠e

75 5–18
(10.4 ± 4.0)

1.5T [5]/1.5T
[1] ⁠(diff.)

0.93 1.2

346 5–19
(10.8 ± 3.8)⁠e

48 5–18
(9.8 ± 3.8)

1.5T [5]/1.5T
[1] ⁠(diff.)

0.91 1.3

324 5–19
(10.7 ± 3.9)⁠e

70 6–18
(10.8 ± 3.4)

1.5T [5]/1.5T
[1] ⁠(diff.)

0.90 1.2

Khundrakpam
et al.
(2015) ⁠a⁠,⁠g

308
(56%)⁠i

5–18
(12.9 ± 3.8)

⁠g 1.5T [6] T1, T2,
PDW

Cortical thickness per region, for different no of cortical parcels:

78 Elastic net
penalized
linear
regression

10-fold
CV⁠k

0.78 1.95 0.77 1.99

160 0.81 1.79 0.80 1.82
1248 0.82 1.74 0.82 1.77
2560 0.83 1.71 0.82 1.78
10240 0.84 1.68 0.82 1.76

Wang et al.
(2014) ⁠a

303
(47%)

7–22
(11.8 ± 2.6)

– – 1.5T [2], 3T
[1]

T1 Cortical
thickness,
mean
curvature,
Gaussian
curvature (all
regionwise)

RVR (with
Gaussian
RBF kernel)

10-fold
CV

0.79 1.38 –

- = data not given or not applicable; ADC = apparent coefficient of diffusion; BOLD = blood oxygen level–dependent; CV = cross-validation; DTI = diffusion tensor imaging; DWI = diffusion weighted imaging; FA = fractional anisotropy;
rs-fcMRI = resting-state functional connectivity MRI; FLAIR = fluid-attenuated inversion recovery; GM = Gy matter; GMV = grey matter volume; LASSO = least absolute shrinkage and selection operator; LOO = leave-one-out; MAE = mean absolute
error between brain age and chronological age; MD = mean diffusity; PDW = proton density-weighted images; RAVENS = regional analysis of volumes examined in normalized space; RBF = radial basis function; ROI = region of interest; SD = standard
deviation; SVR = support vector regression; VN = ventricular; WM = white matter; WMV = white matter volume.
⁠(diff.) Test data were acquired on a different MRI scanner than training data.
⁠(same) Test data were acquired on the same MRI scanner as training data.

a Data from publicly available databases. For more details on the data please refer to the cited paper.
b Performance for model including all modalities as input. Performance measures using modality subsets are given below.
c Independent test sample formed from follow-up MRI scans 2 years after 1st MRI scan.
d This number denotes the number of scans.
e Recalculated by the authors of the review paper.
f Performance for model including all 5 image maps as input. Performance measures using each image type in isolation are given below.
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g MRI scanner-site effects were tested, i.e. brain age model was trained on data from 5 sites and tested on the from the left-out site, repeated for each site.
h The study included 2 independent test samples.
i Longitudinal data is used to model brain aging (n = 679).
k All (longitudinal) scans of subject i were either in the training set or in the test set.
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4.4. Review of studies predicting brain age during adulthood

To our knowledge, 20 studies establishing models for brain aging,
covering age ranges from early to late adulthood have been published
so far (Table 3; Ashburner, 2007; Cherubini et al., 2016; Cole et al.,
2015; Franke et al., 2010; Groves et al., 2012; Han et al., 2014; Kandel
et al., 2013; Konukoglu et al., 2013; Liem et al., 2017; Lin et al., 2016;
Mwangi et al., 2013; Neeb et al., 2006; Sabuncu and Van Leemput,
2011; Sabuncu et al., 2012; Schnack et al., 2016; Steffener et al., 2016;
Tian et al., 2016; Wang and Pham, 2011; Wang et al., 2014). Accura-
cies for brain age predictions derived from cross-validation in the whole
reference sample of healthy subjects ranged from r = 0.43–0.97, MAEs
from 4.3–13.5, and RMSEs from 5.1–21.0 years.

Regarding modeling of healthy brain aging during adulthood into
senescence, studies mathematically modeling healthy brain aging,
which use a number of parameters derived from different MRI modal-
ities, tended to provide more accurate brain age predictions. Groves et
al. (2012) generated a model of normal brain aging utilizing a sam-
ple of healthy subjects aged 8–85 years. This model was based on a
number of T1- and DTI-derived parameters, generating and testing by
utilizing linked independent component analysis (ICA) with leave-one-out
cross-validation, resulting in an overall prediction accuracy of r = 0.97
and MAE = 5.9 years. Cherubini et al. (2016) also used a number of pa-
rameters derived from different MRI modalities (i.e., T1, T2, T2*, DTI),
generating and testing their brain age model by utilizing multiple linear
regression with leave-one-out cross-validation in a sample of healthy indi-
viduals aged 20–74 years, resulting in an overall age prediction accu-
racy of r = 0.96. Additionally, this study found voxel-wise mean diffu-
sivity to be the main predictor of the brain age model (i.e., explaining
62.4% of intra-individual variance), followed by GM volume (18.3%),
T2* (14.2%), and fractional anisotropy (3%). However, both studies nei-
ther provided prediction accuracies for single modalities, nor validated
their brain age models across scanners or in independent samples.

A very recent study used a number of parameters derived from T1
and T2*, including cortical and subcortical measures as well as con-
nectivity data, generating and testing the brain age model by utiliz-
ing linear support vector regression (SVR) with half-split cross-validation
(Liem et al., 2017). This approach showed a very good performance
during cross-validation within the reference sample (combined model:
r = 0.93, MAE = 4.3 years), but a rather fair generalizability when
validating the brain age model in an independent sample of healthy
subjects, with data acquired on a different scanner (combined model:
r = 0.86, MAE = 8.0 years).

Three other studies used parameters derived from DTI as the only
MRI modality (Han et al., 2014; Lin et al., 2016; Mwangi et al., 2013).
Best prediction performances in the reference samples were obtained
utilizing relevance vector regression (r = 0.90, MAE = 6.9 years; Mwangi
et al., 2013) or an artificial neural network approach (r = 0.80,
MAE = 4.3 years; Lin et al., 2016). Again, these studies neither vali-
dated their brain age models across scanners, nor in independent test
samples.

Most of the studies generating models for brain aging during adult-
hood used parameters from T1-weighted MRI only, deriving voxel-
or regionwise tissue volumes or cortical measures. Best prediction ac-
curacies during cross-validation in the reference samples as well as
during validation of the brain age model in independent test sam-
ples were achieved utilizing relevance vector regression (reference sam-
ple: r = 0.94, MAE = 4.6 years; independent test sample: r = 0.89,
MAE = 5.4 years; Franke et al., 2010), linear support vector regression
(reference sample: r = 0.89, MAE = 4.3 years; independent test sam-
ple: MAE = 3.9 years; Schnack et al., 2016), or Gaussian process regres

sion (reference sample: r = 0.92, MAE = 6.2 years; independent test
sample: r = 0.93, MAE = 5.8 years; Cole et al., 2015).

Depending on the choice of MRI modalities, derived parameters,
mathematical approaches and numbers of subjects in the reference sam-
ples used for generating the brain age prediction model, and age ranges
in the reference and independent test samples, diverging accuracies for
brain age prediction have been reported. In general, prediction accuracy
was improved in multimodal models including parameters derived from
DTI. Although DTI is a powerful tool offering unique information on tis-
sue microstructure and neural fiber connections that cannot be obtained
from standard structural MRI, parameters derived from DTI can differ
significantly depending on the type of scanner, field strength, gradient
strength, number of gradient orientations, preprocessing, fitting proce-
dure, tractography algorithm etc. (Jones and Cercignani, 2010; Jones
et al., 2013; Tournier et al., 2011; Van Hecke et al., 2015). Unfortu-
nately, all reviewed studies including DTI failed to prove generalizabil-
ity of the established brain age model in independent test samples and
across scanners.

4.5. Application of brain age biomarkers in healthy and diseased
populations

Some of the brain age models described in this review have already
been applied to neuropsychological and clinical questions. In multi-
modal models for structural brain development, advanced brain matu-
ration was related to superior cognitive performances (Erus et al., 2015;
Khundrakpam et al., 2015). Applying a brain maturation model based
on voxelwise GM and WM volume, delayed brain maturation has been
shown in adolescents born very preterm (Franke et al., 2012b). Estab-
lished and validated models for brain aging showed significant relation-
ships between individual brain ages and health and lifestyle variables,
and medical drug use (Franke et al., 2014; Habes et al., 2016). Lower
brain ages than chronological age were found to be associated with
higher levels of education and physical activity (Steffener et al., 2016)
as well as higher levels of meditation practice (Luders et al., 2016). Ev-
idence of advanced brain aging has been provided for traumatic brain
injury (Cole et al., 2015), epilepsy (Pardoe et al., 2017), HIV (Cole et
al., 2017d), DS (Cole et al., 2017a), diabetes (Franke et al., 2013), schiz-
ophrenia (Koutsouleris et al., 2014; Schnack et al., 2016), MCI and AD
(Franke et al., 2012a; Franke et al., 2010; Gaser et al., 2013), and in
elderly people who had previously suffered undernutrition during ges-
tation (Franke et al., 2017a, 2017b). Furthermore, advanced brain ag-
ing was shown to be indicative of poorer physical fitness, lower fluid
intelligence, higher allostatic load, and increased mortality (Cole et al.,
2017c), and even predictive of the onset of cognitive decline (Franke et
al., 2012a; Gaser et al., 2013).

5. A biomarker for cognitive brain development and aging

5.1. Cognitive information processing capacity across the lifespan

The famous quote of Mortimer Mishkin, “[brain] imaging is not
enough”, is still valid. Therefore, structural imaging data have to be
accompanied by an assessment of cognition to estimate the functional
consequences of brain lesions. Cognition is typically considered and as-
sessed as a multifaceted concept comprising a variety of different capa-
bilities (Kanwisher, 2010). It is also well established that different abil-
ities share a substantial commonality: A subject who acts smartly on
task A tends to perform efficiently also on task B, even if both tasks be-
long to different cognitive domains, such as language and visuospatial
functions. Such concordance is assumed to result from a general cogni-
tive aptitude, or a “g-factor” of intelligence, that subserves all aspects
of intellectual functioning (Spearman, 1904) and has been associated
with a multiple-demand brain system involving the fronto-parietal cor

13
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Table 3
Models for brain aging during adulthood using non-invasive structural markers.

Study
Training sample (healthy
subjects) Independent test sample

MRI training
[no of
scanners]/MRI
test [no of
scanners] Modalities

Quantitative
parameters
used for brain
age modeling

Algorithm
for age
modeling

Train-Test
split for
validation Prediction performance in training sample

Prediction performance
in test sample

No
[female]

Age
mean ± SD
(yrs)
[range]

No
(female)

Age
mean ± SD
(yrs)
[range] r MAE (yrs)

RMSE
(yrs) r MAE (yrs)

Ashburner
(2007) ⁠a

471
[44%]

32
[17–79]

– 1.5T [1] T1 GM & WM
density maps
(small/large
deformations)

Linear RVR 400/71
(50×)

0.83/0.81 ⁠c – 7.55/7.90 ⁠c –

RVR, RBF
0.5⁠b

0.82/0.83 ⁠c – 7.64/7.34 ⁠c

RVR, RBF
1⁠b

0.84/0.85 ⁠c – 7.07/6.84 ⁠c

RVR, RBF
2⁠b

0.85/0.86 ⁠c – 6.84/6.64 ⁠c

RVR, RBF
4⁠b

0.85/0.86 ⁠c – 6.74/6.56 ⁠c

RVR, RBF
8⁠b

0.86/0.86 ⁠c – 6.70/6.52 ⁠c

RVR, RBF
16⁠b

0.86/0.86 ⁠c – 6.68/6.50 ⁠c

RVR, RBF
32⁠b

0.85/0.85 ⁠c – 6.80/6.64 ⁠c

Cherubini
et al.
(2016)

140
[58%]

42 ± 14
[20–74]

– 3T [1] T1, T2,
T2*, DTI,
FLAIR

GMV, R2*,
MD, FA (all
voxelwise)

Multiple
linear
regression

LOO 0.96 – – –

Cole et al.
(2015) ⁠d

1537
[50%]

42 ± 20
[18–90]

113
[57%]

43 ± 20 1.5T & 3T
[ > 10]/ 3T
[1] ⁠(diff.)

T1 Similarity matrix of MRI data for:

GMV
(voxelwise)

GPR 10-fold CV 0.92 6.20 – 0.93 5.80

WMV
(voxelwise)

0.92 6.16 – 0.93 6.35

Cole et al.
(2017a,
2017b,
2017c,
2017d) ⁠d

2001
[49%]

40 ± 18
[18–90]

105
[6%]

56
[50–62]

1.5T & 3T
[ > 10]/ 3T
[2] ⁠(diff.)

T1 Similarity
matrix of MRI
data for
concatenated
GMV & WMV
(voxelwise)

GPR 10-fold CV 0.94 5.01 6.31 0.69 –

Franke et
al.
(2010) ⁠a⁠,⁠d

547
[56%]

48 ± 17
[19–86]

108
[37%]

32 ± 10
[20–59]

1.5T [2], 3T
[1]/ 1.5T [1]
⁠(diff.)

T1 GMV
(voxelwise)

Linear RVR 400/137
(1x)

0.94 4.61/4.96 ⁠e 5.90 0.89 5.44/5.57 ⁠e

ε-SVR
(optimized)

– 4.85/4.85 ⁠e – – 5.42/5.51 ⁠e

ε-SVR
(default)

– 9.82/4.76 ⁠e – – 5.97/5.39 ⁠e

ν-SVR
(optimized)

– 4.85/4.85 ⁠e – – 5.51/5.51 ⁠e

ν-SVR
(default)

– 11.06/4.72 ⁠e – – 6.38/5.36 ⁠e
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Table 3 (Continued)

Study
Training sample (healthy
subjects) Independent test sample

MRI training
[no of
scanners]/MRI
test [no of
scanners] Modalities

Quantitative
parameters
used for brain
age modeling

Algorithm
for age
modeling

Train-Test
split for
validation Prediction performance in training sample

Prediction performance
in test sample

No
[female]

Age
mean ± SD
(yrs)
[range]

No
(female)

Age
mean ± SD
(yrs)
[range] r MAE (yrs)

RMSE
(yrs) r MAE (yrs)

Groves et
al. (2012)

484 [8–85] – 1.5T [1] T1, DTI FA, MD, MO,
GMV, cortical
thickness,
cortical
surface area

Linked ICA LOO 0.97 5.9 – –

Han et al.
(2014) ⁠a⁠,⁠d

201 [4–85] – 3T [1] DTI Connectivity matrix:

- no
normalization

CBR
(linear)

Half-split
(100x)

0.77 10.41 – –

-
normalization
within
subjects

0.68 11.83

-
normalization
between
subjects

0.59 14.14

- no
normalization

CBR (non-
linear)

0.79 9.50

-
normalization
within
subjects

0.69 11.64

-
normalization
between
subjects

0.60 14.39

- no
normalization

PLSR 0.72 9.80

-
normalization
within
subjects

0.67 10.28

-
normalization
between
subjects

0.43 13.51

- no
normalization

ε-SVR
(optimized)

0.77 10.26

-
normalization
within
subjects

0.63 16.73

-
normalization
between
subjects

0.53 15.46
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Table 3 (Continued)

Study
Training sample (healthy
subjects) Independent test sample

MRI training
[no of
scanners]/MRI
test [no of
scanners] Modalities

Quantitative
parameters
used for brain
age modeling

Algorithm
for age
modeling

Train-Test
split for
validation Prediction performance in training sample

Prediction performance
in test sample

No
[female]

Age
mean ± SD
(yrs)
[range]

No
(female)

Age
mean ± SD
(yrs)
[range] r MAE (yrs)

RMSE
(yrs) r MAE (yrs)

Kandel et
al. (2013) ⁠a

191⁠f 72 ± 8 – [4] T1 Cortical
thickness

Sparse
linear
regression

LOO/
3-fold CV ⁠g

0.52 3.70/5.58 ⁠g – –

Elastic net
(with
LASSO)

0.46 3.12/5.86 ⁠g –

Konukoglu
et al.
(2013) ⁠a ⁠d

414 [18–93] – 1.5T [1] T1 GMV
(voxelwise)

NAF/kNNc for

k = 1 LOO 0.91/0.86 ⁠h – 10.9/14.3 ⁠h –
k = 7 0.94/0.91 ⁠h – 8.6/11.9 ⁠h

k = 15 0.94/0.90 ⁠h – 8.5/12.2 ⁠h

k = 413 0.93/0.88 ⁠h – 9.7/21.0 ⁠h

Liem et al.
(2017) ⁠d

2354
[48%]

59 ± 15
[19–82]

475
[65%]

46 ± 19
[18–85]

3T [1]/ 3T [1]
⁠(diff.)

T1, T2* Concatenated
matrix
including
brain
connectivity
(197 & 444
regions),
cortical
thickness,
cortical
surface area,
subcortical
volumes⁠i

Linear SVR Half-split 0.93⁠i 4.29⁠i – 0.86⁠i 8.02⁠i

Connectivity
matrix 197 &
444

0.89 5.25 – 0.71 11.22

Connectivity
matrix 197

0.87 5.99 – 0.69 11.56

Connectivity
matrix 444

0.88 5.77 – 0.68 11.85

Cortical &
Subcortical
measures

0.91 4.83 – 0.87 7.39

Cortical
thickness

0.87 5.95 – 0.79 9.23

Cortical
surface area

0.79 7.29 – 0.47 13.24

Subcortical
volume

0.84 6.44 – 0.81 9.10

Lin et al.
(2016)

112
[52%]

67 ± 7
[50–79]

– 3T [1] DTI Connectivity
maps for FA,
FN & FL

BPANN
(with GA &
LM)

LOO 0.80 4.29 5.09 –
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Table 3 (Continued)

Study
Training sample (healthy
subjects) Independent test sample

MRI training
[no of
scanners]/MRI
test [no of
scanners] Modalities

Quantitative
parameters
used for brain
age modeling

Algorithm
for age
modeling

Train-Test
split for
validation Prediction performance in training sample

Prediction performance
in test sample

No
[female]

Age
mean ± SD
(yrs)
[range]

No
(female)

Age
mean ± SD
(yrs)
[range] r MAE (yrs)

RMSE
(yrs) r MAE (yrs)

Mwangi et
al. (2013) ⁠d

188 [4–85] – 3T [1] DTI FA RVR
(Gaussian
RBF
kernel)

LOO 0.87 8.20 10.60 –

MD 0.90 7.10 8.96
AD 0.89 7.16 9.19
RD 0.90 6.94 8.85

Neeb et al.
(2006)

44
[48%]

46 ± 15⁠k

[23–74]
– 1.5T [1] T1, T2* Quantitative

water maps
LDA LOO 0.69 6.30 – –

Sabuncu
and
Leemput
(2011,
2012)⁠a⁠,⁠d

336
[62%]

44 ± 24
[18–93]

– 1.5T [1] T1 GM density
(voxelwise)

Linear
RVoxM

Half-split
⁠(2011)/5-fold
CV ⁠(2012)

0.92
⁠(2011)/0.94
⁠(20112)

– 9.5 ⁠(2011)/
7.9 ⁠(2012)

–

Linear
RVM

0.90
⁠(2011)/0.90
⁠(2012)

– 10.2
⁠(2011)/9.9
⁠(2012)

RVoxM-
NoReg

0.91
⁠(2011)/0.93
⁠(2012)

– 10.0
⁠(2011)/8.9
⁠(2012)

Schnack et
al. (2016)

386 34 ± 12
[16–67]

5 25–35 1.5T [1]/ 3T
[1]

T1 GMV
(voxelwise)

Linear SVR LOO 0.89 4.31 – – 3.86

Steffener
et al.
(2016)

331
[55%]

51 ± 18⁠k

[19–79]
– 3T [1] T1 GMV (per

ROI)
SSM Bootstrap

resampling
0.80 – – –

Tian et al.
(2016) ⁠d

63
[35%]

31 ± 9
[18–45]

– 3T [1] rs-fMRI resting-state
functional
connectivities

Elastic net
(with
LASSO)

LOO 0.78 4.81 – –

Wang and
Pham
(2011) ⁠d

20 65 ± 10⁠k

[50–86]
– 1.5T [1] T1 DWT from

GM, WM &
CSF
(regionwise)

HMM LOO 0.67⁠k 6.20⁠k 8.05⁠k –

11 64 ± 9⁠k

[51–76]
0.56⁠k 6.18⁠k 8.18⁠k

8 62 ± 9⁠k

[52–76]
0.63⁠k 8.00⁠k 8.93⁠k

Wang et
al. (2014) ⁠d

360
[51%]

47 ± 16
[20–82]

– 1.5T [2], 3T
[1]

T1 Cortical
thickness,
mean
curvature,
Gaussian
curvature,
surface area
(all
regionwise) ⁠i

RVR
(Gaussian
kernel)

10-fold CV 0.93⁠i 5.06⁠i 6.10⁠i –



UNCORRECTED PROOF
Table 3 (Continued)

Study
Training sample (healthy
subjects) Independent test sample

MRI training
[no of
scanners]/MRI
test [no of
scanners] Modalities

Quantitative
parameters
used for brain
age modeling

Algorithm
for age
modeling

Train-Test
split for
validation Prediction performance in training sample

Prediction performance
in test sample

No
[female]

Age
mean ± SD
(yrs)
[range]

No
(female)

Age
mean ± SD
(yrs)
[range] r MAE (yrs)

RMSE
(yrs) r MAE (yrs)

Cortical
thickness,
mean
curvature,
Gaussian
curvature

0.94 4.57 5.57

Mean
curvature,
Gaussian
curvature

0.82 7.47 9.18

Cortical
thickness

0.89 6.05 7.37

Mean
curvature

0.81 7.88 9.55

Gaussian
curvature

0.55 11.21 13.64

Surface area 0.60 10.52 12.96

- = data not given or not applicable; AD = axial diffusivity; BPANN = back propagation artificial neural network; CBR = correlationbasedregression; CV = cross-validation; DTI = diffusion tensor imaging; DWT = discrete wavelet transform;
FA = fractional anisotropy; FL = fiber length; FLAIR = fluid-attenuated inversion recovery; FN = fiber number; GA = genetic algorithm; GMV = grey matter volume; GPR = Gaussian process regression; HC = healthy control; HMM = hidden Markov
model; ICA = independent component analysis; kNNc = k-nearest neighbour clustering method; LASSO = least absolute shrinkage and selection operator; LM = Levenberg–Marquardt algorithm; LOO = leave-one-out; MAE = mean absolute error between
brain age and chronological age; MD = mean diffusity; MO = mode of diffusion tensor; NAF = neighbourhood approximation forests; PLSR = partial least square regression; R2* = relaxation rate; RBF = radial basis function; RD = radial diffusivity;
RMSE = root mean squared error; ROI = region of interest; rs-fMRI = resting-state functional MRI; RVM = relevance voxel machine; RVoxM = relevance voxel machine; RVoxM-NoReg = RVoxM without spatial regularization; RVR = relevance vector
regression; SD = standard deviation; SSM = scaled subprofile modeling; SVR = support vector regression; WMV = white matter volume
⁠(diff.) Test data were acquired on a different MRI scanner than training data.

a This study compared different modeling methods.
b The number denotes the width of the RBF kernel.
c Results are given for modeling brain aging with concatenated GM & WM density maps resulting from small/large deformation algorithms.
d Data from publicly available databases. For more details on the data please refer to the cited paper.
e Results are given for modeling brain aging with/without applying principal component analysis (PCA) before generating the brain age model.
f This study used data from healthy and cognitively diseased subjects to model and predict brain age.
g The study provides training errors (LOO within the training sample) and test errors (for the left-out 1/3 of the whole study sample).
h Results are given for modeling brain aging with NAF/kNNc algorithms.
i Performance for model including all modalities as input. Performance measures using modality subsets are given below.
k Recalculated by the authors of the review paper.
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tex (Duncan, 2013). This general factor is especially involved in
non-routine tasks requiring novel problem solving, which are commonly
known as tests of “fluid intelligence”. The level of intelligence, i.e. the
relative position of an individual within his/her age cohort, remains
strikingly stable across the lifespan (Deary et al., 2013). Inter-individual
differences are attributed to variations of brain connectivity and physi-
ology (Jung and Haier, 2007), which determine the efficiency of basic
information processing at the core of the cognitive ‘mechanics’ (Baltes
et al., 1999).

Two important lifespan determinants of cognitive mechanics have
been identified, i.e., the information-processing rate and the short-term
storage of information. They build an individual’s cognitive process-
ing capacity and point to basic constraints for cognitive efficiency: the
amount of information that can be maintained in parallel in an active
state; and the speed with which active representations can be accessed
for further processing (Barrouillet and Camos, 2012). These aspects un-
dergo considerable change across the lifespan with a relatively steep in-
crease during childhood development and early adulthood, followed by
a gradual decline with increasing age (Baltes et al., 1999). If it would
be possible to validly assess the basic mechanics of cognition, such a
method could serve as a valuable tool providing information on the ef-
ficiency of cognitive performance on a larger scale and serving as an
appropriate marker for functional brain development and aging. As the
cerebral system underlying visual attention permeates the scaffolding of
cognition at all hierarchical levels of the brain (Petersen and Posner,
2012), including the fronto-parietal cortex (Ptak, 2012), the analysis of
visual perceptual speed and visual short-term memory storage is a can-
didate approach to serve this purpose.

5.2. Efficiency of visual information uptake as a marker of cognitive
development and aging

Extracting information from brief visual displays is a cognitive abil-
ity that reflects fundamental capacity limitations of human informa-
tion processing (Luck and Vogel, 2013) and relates to fluid intelligence
(Deary, 2001). It also undergoes significant decline during aging, as
has been shown with a number of different assessment procedures. The
“useful field of view” (UFOV) task, for example, provides a measure of
visual processing speed (Wood and Owsley, 2014). More specifically,
it assesses the presentation time at which stimuli can be detected at
75% accuracy under varying conditions of saliency. The speed estimate
has been shown to be associated in the elderly with a range of func-
tional outcomes of daily living, among them driving ability, crash risk,
mobility, balance control, and risk of falling. Measurable improvement
has also been revealed during middle to late childhood (Bennett et al.,
2009).

Another method, the “inspection time” (IT) task, is a two-alterna-
tive forced choice and backward masking test involving a simple visual
discrimination between two lines of markedly different lengths (Deary,
2001). By assessing performance accuracy as a function of presentation
time in this task, an estimation of the speed of visual information uptake
is derived. This speed measure has been shown to decline with age, with
the decline being strongly associated with a decrease of the intelligence
level (Ritchie et al., 2014). Variants of this task have also been applied
to children as young as 4 years of age (Williams et al., 2009).

The results acquired with these tasks are in line with the process-
ing speed account of cognitive ageing. This account maintains that
the age-related decline in higher cognitive functions results from a re-
duced efficiency with which simple mental operations can be completed
(Salthouse, 1996). In contrast to response time or psychomotor tasks
such as digit symbol substitution, UFOV and IT more purely reflect
mental speed, because they do not contain motor aspects. However,
even in the extraction of briefly presented stimuli, separable compo

nents of information uptake are involved that cannot be differentiated
by these tasks (Espeseth et al., 2014). A disentanglement of these com-
ponents is accomplished by the ‘theory of visual attention’.

5.3. The ‘theory of visual attention’ (TVA) as a framework for modeling
the efficiency of visual information uptake

The ‘theory of visual attention’ (TVA) was first proposed by
Bundesen (1990) and has since then advanced systematically (Bundesen
and Habekost, 2008; Bundesen et al., 2015). TVA is a computational
model of visual selective attention with a strong association to the bi-
ased-competition framework (Desimone and Duncan, 1995). It accounts
for a broad range of data from “attention” literature, derived both from
behavioral studies in human subjects and from single-cell recordings in
the monkey (Bundesen et al., 2005).

In short, TVA assumes that the visual processing system accumu-
lates evidence on objects in the environment until enough information
is sampled to decide on an object’s identity (i.e. recognition is pos-
sible). This process is more or less an oscillatory interaction between
long-term memory representations and the perceptual features available
from the environment (Kyllingsbaek, 2006). During this process, an un-
selective stage of massive parallel matching between memory represen-
tations (within the visual association cortex) and environmental input is
funneled into a selective stage. Here (purportedly by way of cortico-sub-
cortical and, in particular, thalamo-cortical interactions), allocation of
attentional capacity is biased towards those visual events, which have
gained higher evidence for their “objectness”.

A representative scenario of this process is realized by a simple psy-
chophysical task involving a flash presentation of letter arrays. In one
variant of this task, “whole report”, letters are briefly presented in a cir-
cular arrangement with an individually adjusted presentation time and
are either masked or unmasked. The subjects’ task is to report as many
letters as possible (Fig. 4). Based on the basic equations provided by
TVA (see Bundesen, 1990; Bundesen and Habekost, 2008; Kyllingsbaek,
2006), the probability of a correct letter report as a function of effec-
tive exposure duration is modeled for each subject by an exponential
growth function. Fitting this function according to a maximum likeli-
hood method is undertaken by estimating four parameters, which de-
termine the shape of the curve (Fig. 5). Shape variations resulting from
different parameter values represent individual differences of visual pro-
cessing capacity.

Fig. 4. Typical trial of a whole report task. Six circularly arranged letters are briefly
flashed on a computer screen with variable exposure times (ED; e.g. 10–300 ms). The let-
ters are either presented unmasked or followed by a mask that limits visual stimulus pro-
cessing time to the duration of its physical availability. Subjects’ task is to report as many
letters as possible but refrain from guessing. Stimulus presentation time is individually ad-
justed to compensate for differences in baseline performance.
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Fig. 5. Fitting performance in the whole report task. Black dots represent the mean number of letters correctly reported by a subject (Mean(obs)), as a function of stimulus duration. The
solid curve represents the maximum likelihood fit to these observations (Mean(teo)), as derived from TVA. Three parameters estimated by TVA are shown: perceptual threshold (t⁠0 = ori-
gin of the curve at the abscissa), visual processing speed (C = slope of the curve at its origin), and visual short-term memory storage capacity (K = the curve’s asymptote).

The three important parameter values provided by TVA are: (1) pa-
rameter t⁠0 (expressed in milliseconds), the estimated threshold value
(minimum presentation time) beneath which nothing is perceived (i.e.
probability of report equals 0); (2) parameter C, an estimation of visual
processing speed (rate of information uptake, expressed in numbers of
elements processed per second), which reflects the slope of the exponen-
tial growth function at its origin at the coordinate (t⁠0, 0); and (3) para-
meter K, an estimation of visual short-term memory (VSTM) storage ca-
pacity (the maximum number of objects that can be represented simul-
taneously at a given time in VSTM, expressed in number of elements),
reflecting the asymptote of the exponential growth function. The relia-
bility of these parameter estimates can be derived at the level of each
individual subject by a bootstrapping procedure (Kyllingsbaek, 2006).

Hitherto, assessment of the life-span development and age-related
change of TVA-based parameter estimates (Espeseth et al., 2014;
Habekost et al., 2013; McAvinue et al., 2012; Wilms and Nielsen, 2014)
has collectively involved far more than 400 subjects with ages ranging
from 12 to 87 years. As summarized by Habekost (2015), cognitive ag-
ing according to TVA is characterized by an increase of the perceptual
threshold and a decrease of processing speed and VSTM storage capac-
ity. These modifications might reflect loss of whole brain volume due
to the decrease of grey and white matter that is associated with normal
aging (Good et al., 2001; Knoops et al., 2012). After all, in a TVA-based
study in normal subjects, Chechlacz et al. (2015) found that individ-
ual differences in K and C parameter values are directly linked to struc-
tural differences within the long-association fronto-parietal white mat-
ter. And Bublak et al. (2011), in their study on early AD observed an in-
crease of the perceptual threshold at the MCI stage where a primary cor-
tical pathology can be assumed. In contrast, a decline of VSTM storage
capacity and processing rate was observed only at the dementia stage,
when white matter connectivity is additionally affected. Taken together,
these data strongly suggest the suitability of TVA-derived parameter es-
timates − either separately or in combination − as markers of cogni-
tive aging and as predictors of age-related neurodegenerative diseases.
However, the accuracy and the relationship of TVA-derived parameter
estimates with parameters such as brain age still remain to be estab-
lished. To date, the approach has been successfully applied to a range of
neurological and psychiatric conditions (for review see Habekost, 2015)
where it has proven to be a promising tool especially for analyzing cog-
nitive performance in diffusely disseminated brain disorders.

6. Summary

Until recently, inferences from research data in the fields of bio-
medical and neurosciences were mainly based on classical statistical

methods such as null-hypothesis testing operating at the group-level.
Now, data-driven learning methods, including cross-validation, pattern
classification, and regression-based predictive analyses, exemplify a new
trend that allow measurements and predictions even at the single sub-
ject level (Bzdok, 2016).

Herein, we reviewed and discussed studies, which investigated cellu-
lar, structural and functional biomarkers of brain development and ag-
ing using different methods and across age ranges from the fetal stage
to older age. We determined that a number of attempts have been made
to develop personalized biomarkers for assessing biological brain aging.
At the cellular and more mechanistic level, TL as well as the epigenetic
clock appear to be promising because it fulfills basic requirements for
a marker of aging according to the American Federation of Aging Re-
search (Sprott, 2010). According to these guidelines, the markers should
possess certain characteristics. For example, they should be able to de-
termine biological aging, predict the rate of aging, monitor a fundamen-
tal process that underlies aging, and be measured accurately, efficiently,
and repeatedly without harming the subject. Further, the markers need
to be applicable across the species. Indeed, peripheral TL as well as epi-
genetic clock measurements are readily available in humans. TL and
the epigenetic clock measurements are reliable and efficient, although
sensitivity and accuracy varies widely across labs and methods used.
Thus TL and epigenetic clocks are actually not suitable for multi-cen-
ter studies or for performing comparisons between studies or even be-
tween subjects. Consequently, the potential of TL and epigenetic clocks
in determining general biological or brain age is currently far away from
a direct clinical application. Although a number of studies available in
the literature suggest that peripheral TL and epigenetic clock measure-
ments might indeed be a useful future biomarker of biological age at
least in older populations, they do not appear to represent a general
biomarker or, more specifically, a brain-specific of aging since they are
not solely associated to aging and age-related diseases. If LTL and epige-
netic clocks were truly associated with a general phenotype, one would
ideally observe consistency across populations, measurement methods,
and statistical models. But to date, TL and epigenetic clocks are consid-
ered a weak marker with poor deterministic and predictive accuracy (as
thoroughly discussed in chapter 2). Bearing in mind all those issues dis-
cussed above, it is unlikely that TL and epigenetic clock measurements
could be used as a single biomarker for brain aging in near future.

Although biomarkers of aging were called for to be preferably be
closely related to the mechanistic aging process, development of mark-
ers of brain aging, which are related to brain function and structure,
is much more advanced and provide a considerably higher degree of
correlation to age and diagnostic specificity. Moreover, these markers
show less inter-individual variability as well as methodological vari-
ations of measurements across labs or study sites. The superiority of
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phenotype-related markers may be explained on a number of grounds:
At present it is easier to determine phenotype because the processes un-
derlying brain aging are complex and not yet well understood. More-
over, the organism modulates and responds to the process of aging in
the biological environment through a large variety of compensatory
pathways. In contrast to the complexity of pathways at the cellular level,
the organism can respond to an infinite number of biological and envi-
ronmental influences with only limited changes to the phenotype. Con-
sequently, phenotype-related biomarkers based on functional and struc-
tural brain development and aging probably better reflect and longitu-
dinally track individual brain aging trajectories.

Potentially promising phenotype-related biomarkers of functional
brain aging are those markers that measure cognitive function – if pos-
sible at a global level. Cognitive function is closely related to age during
development and aging (Baltes et al., 1999). Age-related cognitive de-
cline is a major and growing concern in many modern societies since
mental health is perceived as a major determinant limiting quality of
life during aging (Puvill et al., 2016). Thus, biomarkers measuring in-
dividual cognitive brain age and predicting individual trajectory of cog-
nitive decline are highly desirable. Studies in childhood or adulthood
that were based on cognitive information processing capacity as a global
biomarker for brain function demonstrated the potential of capturing
individual trajectories of cognitive brain aging, detecting alterations in
neurological and psychiatric conditions, and even predicting age-related
neurodegenerative diseases. Of course, at present, this is a promise that
has to be filled by further studies demonstrating the accuracy of func-
tional age estimation, its relation to brain age, as well as to measures
of intellectual ability. The occurrence of neuropsychiatric and neurode-
generative diseases and the trajectories of cognitive and functional brain
aging are most likely, at least partly, determined in utero (Gluckman et
al., 2008; Tarry-Adkins and Ozanne, 2014; Van den Bergh, 2011). Con-
sequently, first attempts have been made to detect aberrations of func-
tional fetal brain development as a prerequisite for early preventive or
interventional measures. Determination of the activity of the ANS by
HRV analysis is a clinically promising approach to detect the stage of fe-
tal functional brain development. The activity of fetal ANS regulated by
central nervous control mechanisms is quite easily accessible via analy-
sis of fetal HRP. A functional fetal autonomic brain age score has been
developed which estimates fetal functional brain age with an accuracy
of 3 wG from about 15 wG onwards in 30 min fMCG recordings. It was
validated across fMCG study centers with loss of precision in shorter
(5 min) recordings and across recording technologies with loss of preci-
sion in CTG recordings (Hoyer et al., 2015; Hoyer et al., 2017). It pro-
vides a comprehensive marker of fetal functional brain development and
its disturbances.

Approaches to determine brain age based on structural neuroimag-
ing data are designed to indicate deviations in age-related spatiotempo-
ral brain changes by establishing reliable reference curves for healthy
brain aging and providing individual brain age measures, while ac-
counting for the multidimensional aging patterns across the brain. In
volumetric studies, “healthy” brain aging has been found to follow
highly coordinated and sequenced patterns of brain tissue loss and CSF
expansion on a general and rather superficial level (Raz and Rodrigue,
2006; Resnick et al., 2003; Terribilli et al., 2011), thus allowing for a
robust modeling of “healthy” brain aging via modern pattern recogni-
tion techniques. On the other hand, multiple factors are suggested to
and have already been shown to affect and modify individual brain ag-
ing trajectories, thus stressing the need and usefulness of those modern
MRI-based biomarkers for individual brain aging. Reliability studies for
MRI-based brain aging biomarkers showed high test-retest performance
at the same scanner as well as between scanners, with intraclass cor-
relation coefficients (ICC) of 0.93 and 0.90, respectively (Franke et al.,
2012a) and ICC of 0.96–0.98 and 0.77–0.96, respectively (Cole et al.,
2017b). Furthermore, several studies applying the MRI-based models

for structural brain aging, have already demonstrated profound rela-
tionships between premature brain aging and AD disease severity and
prospective worsening of cognitive functions (Franke et al., 2012a), MCI
and AD (Ziegler et al., 2014), conversion to AD (Gaser et al., 2013),
schizophrenia (Koutsouleris et al., 2014; Schnack et al., 2016), trau-
matic brain injury (Cole et al., 2015), HIV (Cole et al., 2017d), diabetes
mellitus type 2 (Franke et al., 2013), and elderly people suffering from
undernutrition during gestation (Franke et al., 2017a, 2017b), as well
as being indicative of poorer physical fitness, lower fluid intelligence,
higher allostatic load, and increased mortality (Cole et al., 2017c). Ad-
ditionally, significant associations between individual brain aging and
several health- and lifestyle-related risk factors and drug use in the gen-
eral population (Franke et al., 2014; Habes et al., 2016), levels of edu-
cation and physical activity (Steffener et al., 2016) and meditation prac-
tice (Luders et al., 2016) have been shown.

In conclusion, the phenotypic approaches presented here have al-
ready established and validated reference curves for age-related changes
in brain structure and function. Furthermore, they also showed great
potential for easy application in multi-center studies. Thus, these pre-
dictive analytical methods provide individualized biomarkers for deter-
mining the biological age of brain structure and function. The MRI- and
cerebral processing capacity-based markers are able to predict individ-
ual aberrations in brain development and aging as well as the occur-
rence of age-related cognitive decline and age-related neurodegenera-
tive diseases. This review has gathered evidence that neuroimaging data
and fetal HRP as well as cognitive data can be used to establish bio-
markers for brain aging, which have already been confirmed as pro-
viding vital prognostic information. In future, combining different bio-
markers of structural and functional brain age may enhance sensitivity
and specificity for detecting aberrations in biological age compared to
the chronological age in various neurological and psychiatric conditions
and in neurodegenerative diseases. The important prognostic informa-
tion included in the estimation of the structural and functional brain age
may aid in developing personalized neuroprotective treatments and in-
terventions.
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