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Aging alters brain structure and function. Personal health markers and modifiable lifestyle
factors are related to individual brain aging as well as to the risk of developing Alzheimer’s
disease (AD). This study used a novel magnetic resonance imaging (MRI)-based biomarker
to assess the effects of 17 health markers on individual brain aging in cognitively
unimpaired elderly subjects. By employing kernel regression methods, the expression of
normal brain-aging patterns forms the basis to estimate the brain age of a given new
subject. If the estimated age is higher than the chronological age, a positive brain age
gap estimation (BrainAGE) score indicates accelerated atrophy and is considered a risk
factor for developing AD. Within this cross-sectional, multi-center study 228 cognitively
unimpaired elderly subjects (118 males) completed an MRI at 1.5Tesla, physiological and
blood parameter assessments. The multivariate regression model combining all measured
parameters was capable of explaining 39% of BrainAGE variance in males (p < 0.001)
and 32% in females (p < 0.01). Furthermore, markers of the metabolic syndrome as well
as markers of liver and kidney functions were profoundly related to BrainAGE scores in
males (p < 0.05). In females, markers of liver and kidney functions as well as supply of
vitamin B12 were significantly related to BrainAGE (p < 0.05). In conclusion, in cognitively
unimpaired elderly subjects several clinical markers of poor health were associated with
subtle structural changes in the brain that reflect accelerated aging, whereas protective
effects on brain aging were observed for markers of good health. Additionally, the relations
between individual brain aging and miscellaneous health markers show gender-specific
patterns. The BrainAGE approach may thus serve as a clinically relevant biomarker for the
detection of subtly abnormal patterns of brain aging probably preceding cognitive decline
and development of AD.
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INTRODUCTION
The global prevalence of dementia is projected to rise sharply
over the next decades. By 2050, 1 in 85 persons worldwide will
be affected by Alzheimer’s disease (AD), the most common form
of dementia (Brookmeyer et al., 2007). Manifold pathological
changes accumulate over many years or decades before cogni-
tive decline occurs gradually, with dementia representing the final
stage of the pathological cascade (Frisoni et al., 2010; Jack et al.,
2010). These pathological changes include precocious and/or
accelerated brain aging (Fotenos et al., 2008; Driscoll et al., 2009;
Sluimer et al., 2009; Wang et al., 2009; Spulber et al., 2010; Clark
et al., 2012). Recently, atrophic regions detected in AD patients
were found to largely overlap with those regions showing a nor-
mal age-related decline in healthy control subjects (Dukart et al.,
2011). Hence, early identification of neuroanatomical changes
deviating from the normal age-related atrophy pattern has the

potential to improve clinical outcomes in the disease course
through early treatment or prophylaxis (Ashburner et al., 2003).

Though “healthy” brain aging has been found to follow highly
coordinated and sequenced patterns of brain tissue loss and cere-
brospinal fluid (CSF) expansion (Pfefferbaum et al., 1994; Good
et al., 2001; Resnick et al., 2003; Raz and Rodrigue, 2006; Terribilli
et al., 2011), multiple factors affect and modify those individual
trajectories. Several markers of poor health and/or inappropriate
lifestyle (including obesity, high cholesterol, nicotine and alco-
hol abuse, hypertension, diabetes, as well as elevated serum total
homocysteine (tHcy) and lower levels of vitamin B12) have been
related to the risk of accelerated brain atrophy, cognitive decline,
and even dementia (Clarke et al., 1998, 2007; Ellinson et al., 2004;
Clarke, 2006; Steele et al., 2007; Solfrizzi et al., 2008; Chen et al.,
2009; Fitzpatrick et al., 2009; Debette et al., 2010; Oulhaj et al.,
2010; Zylberstein et al., 2011). Furthermore, the combination of

Frontiers in Aging Neuroscience www.frontiersin.org May 2014 | Volume 6 | Article 94 | 1

AGING NEUROSCIENCE







Franke et al. Gender-specific impact of health parameters on BrainAGE

AGE ESTIMATION FRAMEWORK
The BrainAGE framework utilizes a machine-learning pattern
recognition method, namely relevance vector regression (RVR;
Tipping, 2001). It was recently developed to model healthy brain
aging and subsequently estimate individual brain ages based on
T1-weighted images (Franke et al., 2010). As suggested by Franke
et al. (2010), the kernel was chosen to be a polynomial of degree
1, since age estimation accuracy was shown to not improve
when choosing non-linear kernels. Thus, parameter optimization
during the training procedure was not necessary.

In general, the age regression model is trained with chrono-
logical age and preprocessed whole brain structural MRI data (as
described in “Preprocessing of MRI Data and Data Reduction”) of
the training sample, resulting in a complex model of healthy brain
aging (Figure 1A, left panel). Put in other words, the algorithm
uses those whole-brain MRI data from the training sample that
represent the prototypical examples within the specified regres-
sion task (i.e., healthy brain aging). Additionally, voxel-specific
weights are calculated that represent the importance of each voxel
within the specified regression task (i.e., healthy brain aging). For
an illustration of the most important features (i.e., the impor-
tance of voxel locations for regression with age) that were used
by the RVR to model normal brain aging and more detailed
information please refer Franke et al. (2010).

Subsequently, the brain age of a test subject can be estimated
using the individual tissue-classified MRI data (as described in
“Preprocessing of MRI Data and Data Reduction”), aggregating
the complex, multidimensional aging pattern across the whole
brain into one single value (Figure 1A, right panel). In other
words, all the voxels of the test subject’s MRI data are weighted
by applying the voxel-specific weighting matrix. Then, the brain
age is calculated by applying the regression pattern of healthy
brain aging and aggregating all voxel-wise information across
the whole brain. The difference between estimated and chrono-
logical age will reveal the individual brain age gap estimation
(BrainAGE) score, with positive values indicating accelerated

structural brain aging and negative values indicating decelerated
structural brain aging. Consequently, the BrainAGE score directly
quantifies the amount of acceleration or deceleration of brain
aging (Figure 1B). For example, if a 70 years old individual has a
BrainAGE score of +5 years, this means that this individual shows
the typical atrophy pattern of a 75 years old individual.

Recent work has demonstrated that this method provides reli-
able and stable estimates (Franke et al., 2012a). Specifically, the
BrainAGE scores calculated from two shortly delayed scans on the
same MRI scanner, as well as on separate 1.5T and 3.0T scan-
ners, produced intraclass correlation coefficients (ICC) of 0.93
and 0.90, respectively.

Within this study, the BrainAGE framework was applied
using the preprocessed GM images (as described in the section
“Preprocessing of MRI Data and Data Reduction”). For train-
ing the model as well as for predicting individual brain ages,
we used “The Spider” (http://www.kyb.mpg.de/bs/people/spider/
main.html), a freely available toolbox running under MATLAB.

STATISTICAL ANALYSIS
Descriptive statistics were used to summarize all variables.
Physiological and clinical chemistry parameters as markers for
of individual health status were compared between the male and
female sample using analysis of variance (ANOVA) for normally
distributed continuous variables or Kruskal-Wallis tests for vari-
ables that were not normally distributed. Normality was tested
using Shapiro-Wilk tests. Since the ADNI database includes data
from about 50 different study sites across the U.S. and Canada, the
BrainAGE scores were compared between the several sites using
analysis of variance (ANOVA) to test for probable site-specific
effects.

The effect of gender within the relationships between
BrainAGE and physiological and clinical chemistry parame-
ters were investigated by performing analysis of covariance
(ANCOVA). Each specific ANCOVA included all those subjects
who were measured in each specific health and lifestyle parameter,

FIGURE 1 | Depiction of the BrainAGE concept. (A) The model of healthy
brain aging is trained with the chronological age and preprocessed structural
MRI data of a training sample (left; with an illustration of the most important
voxel locations that were used by the age regression model). Subsequently,
the individual brain ages of previously unseen test subjects are estimated,

based on their MRI data (blue; picture modified from Schölkopf and Smola,
2002). (B) The difference between the estimated and chronological age
results in the BrainAGE score, positive BrainAGE scores indicate accelerated
brain aging. (Image reproduced from Franke et al. (2012a), with permission
from Hogrefe Publishing, Bern).
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sub-grouped by gender. For each specific ANCOVA, the model
fitted separate lines for the male and the female sample, thus
allowing the intercept as well as the slopes to vary between both
test samples.

Gender-specific effects of individual health parameters on
BrainAGE were analyzed using linear regression models, specif-
ically partial least squares (PLS). PLS included all subjects that
were measured in all 17 physiological and clinical chemistry
parameters, resulting in n = 107 for the male sample (mean age
75.7 ± 5.3 years) and n = 104 for the female sample (mean age
76.1 ± 4.8 years). However, as not all subjects were measured in
all 17 physiological and clinical chemistry parameters, additional
correlation analyses were performed for the most significant vari-
ables contributing to the variance in BrainAGE (based on the
PLS variable weights) to further explore the relationships between
BrainAGE and each of those physiological and clinical chemistry
parameters. In order to control for covariates, Pearson’s pairwise
correlation for normally distributed variables or Spearman’s for
variables that are not normally distributed with adjustment for
age and study site was used.

To quantify gender-specific effects of extremely low vs.
extremely high levels in the most significant physiological and
clinical chemistry parameters on BrainAGE, both test samples
(i.e., male and female) were split up into quartiles for each of
these clinical parameters. To illustrate the relationships between
individual brain aging and extreme levels in each of these vari-
ables, the BrainAGE scores in the 1st quartile (lowest 25% of
values) of each physiological and clinical chemistry parameter
were tested against the BrainAGE scores in 4th quartile (high-
est 25% of values) of each physiological and clinical chemistry
parameter, using Students’ t-test for normally distributed param-
eters or Mann-Whitney test for those parameters that were
not normally distributed. To control for multiple comparisons,
Bonferroni-Holm correction (Holm, 1979) was applied, adjust-
ing the p-value for the number of variables analyzed (i.e., 4;
p < 0.05).

Additionally, to control for equal distribution in terms of
chronological age within the 1st and 4th quartile groups as well
as to explore the effects of extremely low vs. extremely high lev-
els in the most significant physiological and clinical chemistry
parameters on cognitive (i.e., Alzheimer’s Disease Assessment
Scale ADAS; Mohs and Cohen, 1988; Mohs, 1996) and disease
severity scores (i.e., MMSE, CDR), Students’ t-test for normally
distributed parameters or Mann-Whitney test for those parame-
ters that were not normally distributed were computed. Similar,
Bonferroni-Holm-adjusted p-values were used to determine sig-
nificance (p < 0.05).

Furthermore, the effect of combining the most significant
variables (based on the PLS variable weights) on BrainAGE was
explored in both test samples. Thereto, groups with “healthy”
as well as “risky” clinical markers were formed. The groups
with “healthy” clinical markers included all subjects who had
values equal to or below the medians of the most significant
physiological and clinical chemistry parameters (except for vita-
min B12, as higher values in vitamin B12 are associated with
more sufficient vitamin B12 supply and therefore “better health”).
The groups with “risky” clinical markers included all subjects

who had values equal to or above the medians of the most sig-
nificant physiological and clinical chemistry parameters (except
for vitamin B12, as lower values in vitamin B12 are associated
with an insufficient vitamin B12 supply and therefore “poorer
health”). Students’ t-test was used to test these groups with
combined “healthy” vs. combined “risky” clinical health marker
values.

The Shapiro-Wilk test as well as PLS was performed using
JMP 9.0 (www.jmp.com). All other testing was performed using
MATLAB 7.11. (www.mathworks.com).

RESULTS
GROUP CHARACTERISTICS
In the male as well as in the female test sample, the mean
BrainAGE score was 0.0 years. There were no effects for scanning
sites [male: F(44, 62) = 1.1, p = 0.35; female: F(45, 58) = 1.0, p =
0.43]. The mean values of the physiological and clinical chem-
istry data evaluated here are given in Table 1. In the male test
sample, only BMI, DBP, and uric acid were normally distributed.
In the female test sample, albumin, SBP, DBP, cholesterol, and
MCV were normally distributed. Men showed significantly higher
parameter levels than women in ALT, Direct Bilirubin, Total
Bilirubin, Creatinine, GGT, tHcy, Triglycerides, and Uric Acid,
whereas women show significantly higher levels than men in
Cholesterol and B12 (Table 1).

Table 3 | ANCOVA results for BrainAGE scores and health and

lifestyle variables.

Model

Gender Variable value Gender × value

F p F p F p

Albumin (g/dl) 0.03 0.87 0.47 0.49 0.17 0.68

ALT (U/l) 0.16 0.69 0.58 0.45 3.90 0.05

AST (U/l) 0.01 0.91 0.04 0.84 5.86 0.02

Direct Bilirubin (mg/dl) 0.09 0.77 0.46 0.50 0.21 0.65

Total Bilirubin (mg/dl) 0.56 0.45 3.74 0.06 1.23 0.27

SBP (mmHg) 0.03 0.87 1.14 0.29 0.04 0.85

DBP (mmHg) 0.06 0.80 6.40 0.01 0.85 0.36

BMI (kg/m2) 0.05 0.82 18.81 0.0001 4.26 0.04

Cholesterol (mg/dl) 0.00 0.99 0.39 0.53 0.81 0.37

Creatinine (mg/dl) 0.71 0.40 1.47 0.23 0.01 0.93

GGT (U/l) 0.44 0.51 12.49 0.001 0.00 0.98

Glucose (mg/dl) 0.09 0.76 0.96 0.33 0.06 0.81

MCV (fL) 0.03 0.86 0.68 0.41 0.24 0.62

TSH (μIU/mL) 0.08 0.77 3.11 0.08 0.22 0.64

tHcy (μmol/l) 0.17 0.68 3.82 0.05 0.05 0.82

Triglycerides (mg/dl) 0.07 0.79 0.00 0.96 0.25 0.62

Uric Acid (mg/dl) 1.42 0.23 6.98 0.01 2.52 0.11

Vitamin B12 (ng/l) 0.23 0.63 1.7 0.19 2.47 0.12

ALT, alanin-aminotransferase; AST, aspartat-aminotransferase; BMI, body mass

index; DBP, diastolic blood pressure; GGT, γ -glutamyltransferase; MCV, mean

erythrocyte cell volume; SBP, systolic blood pressure; TSH, thyroid stimulating

hormone; tHcy, total homocysteine; bold type = significant test results.
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GENDER-SPECIFIC EFFECTS
ANCOVAs were performed in order to investigate the effects
of gender on the relationships between BrainAGE scores and
all physiological and clinical chemistry data (Table 3). Within
the whole test sample, BrainAGE scores varied with BMI (p <

0.0001), DBP (p < 0.01), GGT (p < 0.001), and uric acid (p <

0.01). Interactions with gender were found for ALT (p < 0.05),
AST (p < 0.05), and BMI (p < 0.05). Thus, the effects of
health parameters on BrainAGE show gender-specific patterns.
Consequently, the following analyses were performed on males
and females separately.

MALE SAMPLE
For men, when combining all measured physiological and clin-
ical chemistry parameters in the PLS regression model, 39% of
variance within the BrainAGE score was attributed to the phys-
iological and clinical chemistry parameters under consideration
(R2 = 0.39, p < 0.001). BMI, uric acid, GGT, and DBP con-
tributed most to the variance in BrainAGE (Figure 2). More
specifically, higher BrainAGE scores were significantly correlated
to higher BMI (r = 0.35, p < 0.001), increased DBP (r = 0.19,
p < 0.05), increased levels of GGT (r = 0.20, p < 0.05), and

FIGURE 2 | PLS regression model of the male sample. When modeling
the relationships between BrainAGE and health parameters, the PLS
regression model explained 39% of variance in BrainAGE (p < 0.001): BMI,
uric acid, GGT, and DBP are the most significant physiological and clinical
chemistry parameters as they added most to the explained variance in
BrainAGE (top chart) and also showed the highest variable weights, i.e., the
highest impact in the regression model (bottom chart).

increased levels of uric acid (r = 0.25, p < 0.01). This indicates
a strong link between accelerated brain aging and elevated levels
of these four parameters.

To quantify the effects of these most significant physiological
and clinical chemistry parameters on BrainAGE, the BrainAGE
scores of subjects with extremely low levels (i.e., 1st quartile
group) were tested against the BrainAGE scores of subjects with
extremely high levels (i.e., 4th quartile group) in each of those
four parameters (Figure 3). In all four parameters higher values
were related to higher BrainAGE scores, thus suggesting acceler-
ated brain aging. The absolute difference of the mean BrainAGE
scores in the lowest vs. the highest quartile group was 7.5 years for
BMI (p < 0.001), 6.6 years for DBP (p < 0.01), 7.5 years for GGT
(p < 0.01), and 5.6 years for uric acid (p < 0.05). All analyses
survived the Bonferroni-Holm correction. Neither chronologi-
cal age, nor cognitive scores at baseline and follow-up differed
between 1st vs. 4th quartile groups (Table 4).

Combining these four parameters, the effects on BrainAGE
scores were compounded. More precisely, male subjects with val-
ues equal to or below the medians of BMI, DBP, GGT, and
uric acid (“healthy” clinical markers; n = 9) vs. male subjects
with values equal to or above the medians of BMI, DBP, GGT,
and uric acid (“risky” clinical markers; n = 14) showed mean
BrainAGE scores of −8.01 vs. 6.69 years, respectively (p = 0.015;
Figure 4). However, neither chronological age, nor cognitive
scores at baseline and follow-up differed between both groups
(Table 5).

Taken together, the results indicate a strong link between phys-
iological and clinical health markers and structural brain aging in
men, whereas no effects on cognitive scores could be found.

FIGURE 3 | The effects of extremely low vs. extremely high levels in

clinical markers on BrainAGE in the male sample. Mean BrainAGE
scores of male subjects in the 1st (plain) and the 4th quartiles (filled
squares) of the most significant physiological and clinical chemistry
parameters (i.e., BMI, uric acid, GGT, and DBP). Error bars depict the
standard error of the mean (SEM). [∗p < 0.05 after Bonferroni-Holm
correction].
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Table 4 | Means (SD) of BrainAGE scores, chronological age and cognitive scores in the 1st and 4th quartile groups of the four most significant

physiological and clinical chemistry parameters within the male sample.

MALE BMI DBP GGT Uric acid

1st

quartile

4th

quartile

p 1st

quartile

4th

quartile

p 1st

quartile

4th

quartile

p 1st

quartile

4th

quartile

p

BrainAGE score
(years)

−2.84
(6.96)

4.7
(7.29)

<0.05
−3.26
(7.03)

3.35
(7.59)

<0.05
−2.34
(9.08)

5.17
(6.83)

<0.05
−4.10
(8.03)

1.51
(8.79)

<0.05

Chronological age
(years)

77.0
(6.4)

75.5
(4.1)

n.s.
78.4
(5.7)

75.3
(5.1)

n.s.
76.7
(4.8)

74.2
(4.5)

n.s.
76.4
(5.2)

74.3
(5.5)

n.s.

MMSE score
(baseline)

29.1
(0.9)

29.0
(0.9)

n.s.
29.3
(0.9)

29.0
(1.0)

n.s.
28.7
(1.3)

29.1
(1.2)

n.s.
28.8
(1.1)

28.8
(1.1)

n.s.

MMSE score
(12 months follow-up)

29.3
(1.0)

29.0
(1.6)

n.s.
29.3
(1.0)

28.9
(1.5)

n.s.
29.0
(1.3)

29.2
(1.1)

n.s.
29.2
(1.0)

28.8
(1.5)

n.s.

MMSE score
(24 months follow-up)

29.1
(0.9)

28.8
(1.5)

n.s.
29.0
(1.1)

29.3
(1.0)

n.s.
29.2
(0.9)

28.9
(1.5)

n.s.
29.6
(0.7)

28.5
(1.6)

n.s.

MMSE score
(36 months follow-up)

29.0
(1.2)

28.6
(1.4)

n.s.
29.1
(1.3)

28.8
(1.5)

n.s.
29.0
(1.2)

28.7
(1.5)

n.s.
29.3
(1.4)

28.9
(1.2)

n.s.

CDR score
(baseline)

0.00
(0.00)

0.00
(0.00)

n.s.
0.00

(0.00)
0.00

(0.00)
n.s.

0.00
(0.00)

0.00
(0.00)

n.s.
0.00

(0.00)
0.00

(0.00)
n.s.

CDR score
(12 months follow-up)

0.00
(0.00)

0.09
(0.20)

n.s.
0.05
(0.15)

0.04
(0.14)

n.s.
0.06
(0.17)

0.02
(0.11)

n.s.
0.03
(0.11)

0.04
(0.14)

n.s.

CDR score
(24 months follow-up)

0.02
(0.10)

0.10
(0.20)

n.s.
0.05
(0.15)

0.07
(0.17)

n.s.
0.04
(0.14)

0.07
(0.18)

n.s.
0.10

(0.21)
0.06
(0.17)

n.s.

CDR score
(36 months follow-up)

0.07
(0.18)

0.15
(0.28)

n.s.
0.12

(0.28)
0.08
(0.19)

n.s.
0.11

(0.21)
0.08
(0.19)

n.s.
0.00

(0.00)
0.12

(0.22)
n.s.

ADAS score
(baseline)

11.3
(4.3)

10.1
(3.1)

n.s.
9.8

(4.2)
11.1
(4.0)

n.s.
9.3
(3.4)

10.6
(4.2)

n.s.
10.4
(3.1)

10.0
(3.9)

n.s.

ADAS score
(12 months follow-up)

10.6
(4.2)

8.5
(4.1)

n.s.
9.4

(4.0)
10.2
(4.8)

n.s.
10.5
(5.2)

10.6
(4.2)

n.s.
10.5
(4.3)

10.6
(5.0)

n.s.

ADAS score
(24 months follow-up)

10.9
(4.9)

9.6
(4.0)

n.s.
10.9
(4.8)

10.4
(4.7)

n.s.
10.5
(3.9)

10.4
(6.1)

n.s.
10.0
(4.9)

10.8
(6.2)

n.s.

ADAS score
(36 months follow-up)

9.9
(4.2)

9.3
(4.6)

n.s.
9.6

(4.0)
9.0

(4.3)
n.s.

10.3
(4.4)

8.7
(5.5)

n.s.
9.2

(4.2)
10.9
(6.0)

n.s.

p-values of t-tests after Bonferroni-Holm correction, n.s., not significant.

BMI, body mass index; DBP, diastolic blood pressure; GGT, γ -glutamyltransferase; ADAS, Alzheimer’s Disease Assessment Scale; CDR, Clinical Dementia Rating;

MMSE, Mini-Mental State Examination.

FEMALE SAMPLE
For women, the PLS regression model combining all measured
parameters was capable of explaining 32% of BrainAGE vari-
ance (R2 = 0.32, p < 0.01). As can be seen in Figure 5, GGT,
AST, ALT, and vitamin B12 contributed most to the variance in
BrainAGE. More specifically, higher BrainAGE scores were signif-
icantly related to increased levels of GGT (r = 0.25, p < 0.05),
increased AST (r = 0.20, p < 0.05) and ALT levels (r = 0.23, p <

0.05), and tended to be related to decreased levels of vitamin B12

(r = −0.17, p = 0.08). Thus, the pattern of relationships between

health and lifestyle markers and BrainAGE was different in the
female and male samples.

Quantifying the effects of these four most significant phys-
iological and clinical chemistry parameters on BrainAGE, the
BrainAGE scores of subjects with extremely low levels (i.e., 1st
quartile group) were tested against the BrainAGE scores of sub-
jects with extremely high levels (i.e., 4th quartile group) in each
of those four parameters (Figure 6). For GGT, AST, and ALT,
higher parameter values were related to higher BrainAGE scores,
thus suggesting accelerated brain aging. For vitamin B12, higher
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FIGURE 4 | Combined analysis of physiological and serum data

parameters in the male sample. BrainAGE score distributions of male
subjects with “healthy” markers (i.e., values equal to or below the medians
of BMI, DBP, GGT, and uric acid; n = 9) vs. “risky” markers (i.e., values
equal to or above the medians of BMI, DBP, GGT, and uric acid; n = 14;
p < 0.05). Gray boxes contain values between the 25th and 75th
percentiles of the groups, including the median. Error bars indicate data
within 1.5 times the interquartile range. The width of the boxes is
proportional to group size.

values were related to lower BrainAGE scores, thus suggesting a
protective effect on brain aging. For GGT, the absolute difference
of the mean BrainAGE scores was 6.1 years (p < 0.01); for AST, it
resulted in 3.1 years (p < 0.10); for ALT in 5.1 years (p < 0.05);
and for vitamin B12 in 4.8 years (p < 0.05). However, only GGT
survived the Bonferroni-Holm correction. Neither chronologi-
cal age, nor cognitive scores at baseline and follow-up differed
between 1st vs. 4th quartile groups (Table 6).

As already seen in the male sample, the effects on BrainAGE
scores were compounded when combining those four parameters.
More precisely, female subjects with values equal to or below
the medians of GGT, AST, ALT, as well as values equal to or
above the median of vitamin B12 (“healthy” clinical markers;
n = 14) vs. female subjects with values equal to or above the
medians of GGT, AST, ALT, as well as values equal to or below
the median of vitamin B12 (“risky” clinical markers; n = 13)
showed mean BrainAGE scores of −0.99 vs. 3.76 years, respec-
tively (p = 0.04; Figure 7). However, neither chronological age,
nor cognitive scores at baseline and follow-up differed between
both groups (Table 7).

Similar, but to a lesser extent as seen in the men’s data, these
results indicate a significant link between physiological and clini-
cal health markers and structural brain aging in women, whereas
no effects on cognitive scores could be found.

DISCUSSION
The scope of this study was the implementation of a novel MRI-
based biomarker derived from the recently presented BrainAGE
framework to quantify the effect of several common physiological

Table 5 | Means (SD) of BrainAGE scores, chronological age, and

cognitive scores in male subjects with “healthy” clinical markers

(i.e., values equal to or below the medians of BMI, DBP, GGT, and uric

acid) vs. “risky” clinical markers (i.e., values equal to or above the

medians of BMI, DBP, GGT, and uric acid).

Male Clinical markers p

“healthy” “risky”

BrainAGE score
(years)

−8.01
(7.11)

6.69
(6.48)

<0.05

Chronological age
(years)

75.6
(5.5)

73.0
(5.2)

n.s.

MMSE score
(baseline)

28.9
(0.9)

29.4
(0.7)

n.s.

MMSE score
(12 months follow-up)

29.7
(0.7)

29.8
(0.6)

n.s.

MMSE score
(24 months follow-up)

29.5
(0.8)

29.3
(0.9)

n.s.

MMSE score
(36 months follow-up)

29.4
(0.8)

28.6
(1.7)

n.s.

CDR score
(baseline)

0.00
(0.00)

0.00
(0.00)

n.s.

CDR score
(12 months follow-up)

0.06
(0.17)

0.04
(0.13)

n.s.

CDR score
(24 months follow-up)

0.12
(0.23)

0.00
(0.00)

n.s.

CDR score
(36 months follow-up)

0.00
(0.00)

0.04
(0.14)

n.s.

ADAS score
(baseline)

8.6
(4.7)

9.0
(2.9)

n.s.

ADAS score
(12 months follow-up)

9.8
(4.4)

7.9
(4.1)

n.s.

ADAS score
(24 months follow-up)

9.1
(4.0)

7.6
(3.3)

n.s.

ADAS score
(36 months follow-up)

8.6
(4.8)

8.8
(3.4)

n.s.

n.s., not significant.

ADAS, Alzheimer’s Disease Assessment Scale; CDR, Clinical Dementia Rating;

MMSE, Mini-Mental State Examination.

and clinical health markers on individual brain aging. Using
structural MRI data, the BrainAGE approach aggregates the
complex, multidimensional aging patterns across the whole brain
to one single value (i.e., the BrainAGE score) and subsequently
identifies pathological brain aging on an individual level. This
method has been shown to accurately and reliably estimating
the age of individual brains with minimal preprocessing and
parameter optimization using anatomical MRI scans (Franke
et al., 2010, 2012a). Additionally, higher BrainAGE scores were
recently demonstrated to be related to measures of clinical disease
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FIGURE 5 | PLS regression model of the female sample. When modeling
the relationships between BrainAGE and health parameters, the PLS
regression model explained 32% of variance in BrainAGE (p < 0.01). GGT,
AST, ALT, and vitamin B12 are the most significant physiological and clinical
chemistry parameters as they added most to the explained variance in
BrainAGE (top chart) and also showed the highest variable weights, i.e., the
highest impact in the regression model (bottom chart).

severity in AD patients, as well as prospective decline in cognitive
functioning (Franke et al., 2012a) and conversion to AD (Gaser
et al., 2013).

In this study, the BrainAGE approach was applied to a
new sample, which included 110 female and 118 male cog-
nitively unimpaired elderly subjects from the ADNI database.
The results provide evidence that a number of physiological
and clinical health parameters have significant effects on struc-
tural brain aging, hence possibly affecting the onset of dementia.
Furthermore, the effects of health measures on BrainAGE showed
gender-specific patterns.

In cognitively unimpaired elderly men the set of physiologi-
cal and clinical health markers under consideration could explain
39% of variance in BrainAGE. More specifically, several mark-
ers of poor health were significantly related to higher BrainAGE
scores, suggesting advanced brain atrophy. In particular, compo-
nents of the metabolic syndrome (including elevated values in
BMI, DBP, and uric acid) as well as markers of impaired liver
function (including elevated levels of GGT and uric acid) were
significantly related to increased BrainAGE scores of up to 9 years.
This is consistent with previous studies that associated lower
total brain volume as well as an increased risk of later dementia
with a higher BMI and visceral adipose tissue at mid-life (Chen

FIGURE 6 | The effects of extremely low vs. extremely high levels in

clinical markers on BrainAGE in the female sample. Mean BrainAGE
scores of female subjects in the 1st (plain) and the 4th quartiles (filled
squares) of the most significant physiological and clinical chemistry
parameters (i.e., GGT, AST, ALT, and vitamin B12). Error bars depict the
standard error of the mean (SEM). [(∗) p < 0.05 before Bonferroni-Holm
correction; ∗p < 0.05 after Bonferroni-Holm correction].

et al., 2009; Fitzpatrick et al., 2009; Debette et al., 2010) and
the metabolic syndrome (Enzinger et al., 2005). However, those
markers were neither related to cognitive scores at baseline, nor
up to three years later.

In cognitively unimpaired elderly women, 32% of variance in
BrainAGE was explained by the set of health and lifestyle markers
under consideration. In particular, markers of liver and kidney
functions (including ALT, AST, and GGT) as well as vitamin B12

levels were related to BrainAGE scores. Although it still remains
uncertain how vitamin B12 deficiency is linked to accelerated
brain atrophy, cognitive decline, and dementia (McMahon et al.,
2006; Aisen et al., 2008; Langan and Zawistoski, 2011), our results
support recent studies, which suggested a neuroprotective role for
vitamin B12 (Clarke et al., 1998, 2007; Czapski et al., 2012; Morris,
2012; Morris et al., 2012; Douaud et al., 2013; Hinterberger
and Fischer, 2013; Kim et al., 2013). This controversy in litera-
ture regarding the effects of vitamin B12 on brain structure and
function may be due to the heterogeneity of study samples con-
cerning age, gender, baseline cognition, and diagnosis etc. as well
as a heterogeneity of utilized analysis methods. Further, we did
not find any associations between BrainAGE and components
of the metabolic syndrome in the female sample. These results
are consistent with recent studies that also found gender-specific
relationships between (lifestyle-related) health markers and GM
atrophy (Taki et al., 2008) or even risk for AD (Chen et al., 2009).

Even more interesting, when combining the observed gender-
specific risk parameters, the effects on BrainAGE were profoundly
compounded in the male sample. This result is in line with
Luchsinger et al. (2005), reporting an increased risk of AD with
increased numbers of risk factors. However, in the female sample,
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Table 6 | Means (SD) of BrainAGE scores, chronological age and cognitive scores in the 1st and 4th quartile groups of the four most significant

physiological and clinical chemistry parameters within the female sample.

Female ALT AST GGT B12

1st

quartile

4th

quartile

p 1st

quartile

4th

quartile

p 1st

quartile

4th

quartile

p 1st

quartile

4th

quartile

p

BrainAGE score
(years)

−2.88
(6.04)

2.19
(6.19)

n.s.
−0.69
(7.29)

2.45
(7.44)

n.s.
−3.88
(6.78)

2.18
(7.04)

<0.05 1.87
(8.06)

−2.97
(6.83)

n.s.

Chronological age
(years)

76.8
(4.1)

76.0
(5.6)

n.s.
76.4
(4.2)

76.6
(5.9)

n.s.
77.5
(4.6)

74.5
(4.3)

n.s.
77.5
(5.0)

76.6
(4.0)

n.s.

MMSE score
(baseline)

29.1
(0.8)

29.1
(1.3)

n.s.
29.0
(1.1)

29.3
(0.7)

n.s.
29.3
(0.8)

29.4
(0.8)

n.s.
29.1
(1.1)

29.4
(0.7)

n.s.

MMSE score
(12 months follow-up)

28.9
(1.0)

29.2
(0.8)

n.s.
29.1
(0.9)

29.3
(0.8)

n.s.
29.3
(0.9)

29.5
(0.7)

n.s.
29.2
(1.0)

29.2
(1.2)

n.s.

MMSE score
(24 months follow-up)

29.2
(0.9)

29.0
(0.9)

n.s.
29.4
(0.9)

28.9
(1.1)

n.s.
29.1
(0.8)

29.3
(0.9)

n.s.
29.1
(1.1)

29.3
(0.9)

n.s.

MMSE score
(36 months follow-up)

29.5
(0.7)

28.9
(1.7)

n.s.
29.5
(0.9)

29.4
(0.9)

n.s.
29.3
(0.7)

29.3
(1.0)

n.s.
29.1
(1.5)

29.3
(0.8)

n.s.

CDR score
(baseline)

0.00
(0.00)

0.00
(0.00)

n.s.
0.00

(0.00)
0.00
(0.00)

n.s.
0.00

(0.00)
0.00

(0.00)
n.s.

0.00
(0.00)

0.00
(0.00)

n.s.

CDR score
(12 months follow-up)

0.00
(0.00)

0.07
(0.18)

n.s.
0.05
(0.15)

0.05
(0.15)

n.s.
0.00

(0.00)
0.05
(0.15)

n.s.
0.02
(0.10)

0.06
(0.17)

n.s.

CDR score
(24 months follow-up)

0.03
(0.12)

0.03
(0.12)

n.s.
0.03
(0.11)

0.07
(0.18)

n.s.
0.00

(0.00)
0.07
(0.17)

n.s.
0.02
(0.10)

0.03
(0.11)

n.s.

CDR score
(36 months follow-up)

0.11
(0.21)

0.00
(0.00)

n.s.
0.14

(0.23)
0.09

(0.27)
n.s.

0.08
(0.19)

0.09
(0.25)

n.s.
0.07
(0.18)

0.06
(0.16)

n.s.

ADAS score
(baseline)

8.9
(3.7)

8.4
(3.3)

n.s.
9.8

(4.8)
9.0
(3.8)

n.s.
8.9

(4.3)
8.0

(4.6)
n.s.

9.1
(5.2)

9.3
(4.6)

n.s.

ADAS score
(12 months follow-up)

7.2
(3.9)

7.2
(3.4)

n.s.
6.8

(3.3)
8.1
(3.8)

n.s.
7.2

(4.7)
7.0

(3.4)
n.s.

7.7
(3.8)

7.4
(4.3)

n.s.

ADAS score
(24 months follow-up)

8.6
(5.1)

9.5
(5.6)

n.s.
8.4

(4.4)
10.5
(5.2)

n.s.
9.4

(5.1)
7.3

(4.9)
n.s.

8.1
(4.1)

8.8
(3.7)

n.s.

ADAS score
(36 months follow-up)

7.5
(3.6)

7.9
(3.5)

n.s.
6.1

(3.2)
9.6
(5.1)

n.s.
7.2

(2.8)
7.6

(4.3)
n.s.

7.5
(3.6)

8.0
(3.5)

n.s.

p-values of t-tests after Bonferroni-Holm correction; n.s., not significant.

ALT, alanin-aminotransferase; AST, aspartat-aminotransferase; GGT, γ -glutamyltransferase; ADAS, Alzheimer’s Disease Assessment Scale; CDR, Clinical Dementia

Rating; MMSE, Mini-Mental State Examination.

the compounding effect was much smaller, but still statistically
significant. Additionally, the set of serum markers under con-
sideration could explain 39% of variance in BrainAGE in men,
opposed to 32% in women. When analyzing men and women
together, only components of the PLS pattern of the male sample
were significantly related to increased BrainAGE scores (data not
shown). Thus, the present study strongly suggests distinct gender-
specific patterns of brain aging associated with certain health
parameters, supporting the idea of the newly founded area of gen-
der medicine (Pinn, 2003) that the phenomenon of aging as well
as the prevention, detection, treatment, and outcome of illnesses

affect men and women differently, including differences in basic
aspects of their normal function and their experience of the same
illness. Especially for AD, it was suggested that the underlying
mechanisms may be different in men and women (Grossi et al.,
2005). Therefore, in the design of future studies, it should be
imperative that there be enough women and men for appropriate
gender-specific analyses (Azad et al., 2007).

Because this study was cross-sectional, it remains unclear
whether certain health and lifestyle factors are cause or conse-
quence of the associations found. Nevertheless, it strongly sup-
ports previously published results of personal lifestyle and overall
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