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During evolution, the brain becomes more and more complex. With increasing volume, the surface area 
expands to a disproportionately greater extent through the development of a species-specific but individual 
folding pattern. As shaping of the brain is virtually complete in early development, this permits the adult 
brain to be the subject of shape analysis to investigate its development. Other surface properties such as 
thickness alter significantly over the entire lifetime and in diseases, and reflect the current state of the brain. 
This chapter offers an introduction to individual development theories and models, surface reconstruction 
techniques, and shape measures to describe surfaces properties.

Key words: surface, shape, measures, folding, gyrification, MRI, brain, thickness, curvature, development, aging, evolution, 

morphometry, structure

1. The mammalian brain

The beginning of systematic studies of the human brain in the 
19th century raised questions about the link between anatomi-
cal structure and its function and how obvious folding affects 
its abilities 1-9. During evolution and development, the enlarge-
ment of the brain coincides with increased and more individual 
folding that comprises a non-linear enlargement of surface 
area that correlates with increased intellectual capabilities 6-9. 
The individual shape of the brain, especially for larger species, 
requires nonlinear registration techniques to compare different 
brain structures 10-12. Besides highly individual pattern folding, 
population- and disease-specific pattern have been found that are 
the product of early development 8,9,13-15. 

The brain is arranged in two major classes of tissue, gray mat-
ter (GM) and white matter (WM), which are surrounded by cere-
brospinal fluid (CSF) and packed within the skull (Figure 1A). 

The GM can be seen as the processing region with a large num-
ber of neurons that are connected by myelinated dendrites that 
form WM fiber tracts and allow high-speed connection between 
different regions. In contrast, CSF serves as a physical buf-
fer that allows geometrical changes in brain development and 
aging. The surface area of the cortex, a strong folded ribbon of 
GM that surrounds the WM, is particularly increased during 
both individual and evolutional development 5-9,14 (Figure 1B 
and 1C). The cortex can be described as an organized surface 
whose folding allows a large surface to fit compactly within 
the cranium 7,13,16-18. The gyrification process that creates out-
ward  (gyri) and inward (sulci) folding during embryogenesis is 
still under discussion 9,14,15,18,19. The closer connectivity within 
the gyri and the obvious similarities in the folding pattern of 
smaller species and major structures led to the expectation that 
the gyri process related things 8,13,18. The cortex of the cere-
brum (neocortex) is organized into six layers with regional 
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variation in thickness and different functional processing. Its 
structure further depends on the local folding and compensate for 
the number of layer specific neurons, where imaginary cortical 
units contain the same amount of neurons per layer 1,5,13,20 (GM 
blocks A, B, C in Figure 2B). I.e., a cortical unit on top of a gyrus 
has a larger outer and smaller inner surface area with thicker 
inner and thinner outer layer (region C in Figure 2C), whereas 
a cortical unit on the bottom of a suclus has a smaller outer and 
larger inner surface area with thicker outer and thinner inner 
layer (region B in Figure 2C). It can therefore be expected that 
local folding only has a limited influence on function and can be 
seen as a simple product of energy-minimizing processes related 
to brain growth 14,15,19,21.

Magnetic resonance imaging (MRI) and automatic prepro-
cessing techniques allow in vivo analysis of the macroscopic 
brain structure in the field of computational morphometry of 
even large cohorts 10,22. Early regional manual measures were 
extended to automatic whole brain techniques such as voxel-
based (VBM) 10, region-based (RBM) 23-25, deformation-based 
(DBM) 26, and surface-based morphometry (SBM) 12,22,23,27 that 
allow the detection of even subtle changes in the brain structure. 
In the last decade, the volume of the GM in particular as well as 
the cortical thickness has become an important biomarker for 
development 28, aging 29,30, plasticity 31, and a number of dif-
ferent diseases 32. At this point, SBM allows essential improve-
ments compared to VBM or DBM by (i) additional measures 
that describe the shape of the brain 18,33,34, (ii) dissection of GM 
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Figure 1: The human cerebrum (A) is a highly folded structure that can be macroscopically described as a ribbon of gray matter (GM) that 
surrounds a core of white matter (WM). This GM ribbon (neocortex) is around 2 to 4 mm thick and organized into six regions- and function-
specific layers that contain different types of neurons and can be simply described as a processing region, whereas the WM is a high-speed 
connection between different brain regions. With increasing size, the brain evolves in a species-specific folding pattern (B) with increased 
individual influences (C) that occur early during an individual’s development and stay relatively constant over an individual’s lifetime, whereas 
other parameters such as thickness change significantly during development and aging (C).
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volume into thickness and area 35, (iii) improved registration 
and partitioning (region alignment) 36, (iv) correct anatomical 
smoothing 32,37,38, (v) mathematical shape modeling 14,15,18,21,39, 
and (vi) combining different MRI modalities such as functional 
imaging (fMRI) that focuses on task-specific activation of cor-
tical areas 38, diffusion imaging (dMRI) to analyze WM fiber 
tracts 40, and structural weightings such as T1, T2, PD, and 
quantitative imaging (qMRI) 41 to analyze tissue-specific prop-
erties such as myelination 42, WM hyperintensities or lesions in 
multiple-sclerosis 43. Although VBM is very sensitive to subtle 
GM changes in brain plasticity, it lacks the function to describe 
complex folding pattern and its development, whereas DBM 
partially covers folding differences as well as volume changes 
that impede analysis. RBM on the other hand allows the combi-
nation of different techniques but depends on the atlas maps. 

Prior to the technical description of surface reconstruction, 
modification, and measures, a small introduction to brain devel-
opment, its underlying biomechanical processes, and modeling 
will be described here. For a detailed introduction, see chapter 
2.2 (development) and chapter 2.3 (normal aging). 

2. Brain development, plasticity, and aging

It is expected that brain folding follows the same biomechani-
cal rules in all mammals, but the process itself is still undergoing 
significant research 6,8,9,14,19,44. The development of the cerebrum 
undergoes three major periods: (i) the ballooning stage, (ii) the 
gyrification phase, and (iii) a subsequent scaling in childhood 
and adolescence. Further changes in the healthy adult brain are 
recognized as plasticity (short-time) and aging (long-time). The 
early ballooning phase is relatively similar between species 
including an enlargement by radial and tangential tissue growth 
(Figure 2), whereas gyrification is species-specific and shows 
higher tangential than radial growth that causes folding with 
more individual patterns in larger brains 8,9,14.

Phase I: ballooning

The ballooning phase from human gestation week (HGW) 
0 to 15 is described by an intensive radial enlargement of the 
ventricle that compensates the simultaneous tangential growth 
of the intermediate zone and increases the brain surface without 
significant folding, where only the longitudinal and Sylvian fis-
sures become prominent by bending . In HGW 5 to 20, neurons 
are generated in the ventricular zone a    nd migrate to the skull, 
where they create the structure of the cortical layer. At this time, 
the cortex shows a radial dMRI pattern, indicating low con-
nectivity within the cortex 9,14,44, with the first large fiber tracts 
becoming visible in the WM 40. 

Phase II: gyrification

After ballooning and layer building, the neurons in the cor-
tex start forming connections and the radial dMRI pattern gets 
lost 40. Without intensive ventricular enlargement, the tangential 
growth becomes prominent and causes buckling . Gyrification 
starts with major structures such as the central sulcus 14. External 
forces due to limitations of the skull and meninges were found 
to have minor effects 2,9,14,15,19, and it is presumed that gyrifica-
tion depends on internal forces of WM connectivity (the axial 
tension theory 13) or tangential growth of the GM (the buckling 

theory) 3,7. Recent experimental and computational growth mod-
els  15,18,19,39 have shown promising results to explain the natural 
folding as an energy-minimizing process of surface expansion 
that relies on the stiffness of the inner core, the growing-rate, and 
local thickness, where thinner regions and faster growing rates 
increase folding and stiffer cores trigger more complex struc-
tures 15,19,39. As far as the cortex, it has a lower limit of thick-
ness of about 0.4 mm 6, gyrification generally only occurring for 
brains larger than 3 cm (about 10 cm3). 

Phase III: further scaling

The folding is nearly completed around birth in humans 46 and 
both tangential and radial growth is balanced again 47, whereas 
gyrification starts after birth in other species such as ferrets 19. 

Adulthood and aging 

Over an individual’s lifetime, the cortex shrinks slowly every 
year, whereas the WM continues to grow up to the age of around 
40 years. The WM can show further degeneration as evidenced 
by MRI as WM hyperintensity with GM-like intensities in aging, 
as well as in diseases such as multiple sclerosis. Beside the 
global trend of tissue atrophy, brain plasticity allows an increase 
in local tissue volume. For elderly and people with neurodegen-
erative diseases such as Alzheimer’s disease, accelerated tissue 
atrophy was reported 30. Overall, tissue atrophy accompanies an 
enlargement of the ventricle and sulcal CSF that keeps the brain 
in a general shape within the skull.

Interim conclusion

Finally, we can conclude that the gyrification of the cortex 
in most mammals occurs most significantly during the second 
and third trimester of pregnancy most likely by local tangential 
growth of GM tissue after initial lamination at the end of the 
first trimester. As far as the fact that the folding pattern stays 
relatively constant over an individual’s lifetime, it is expected to 
be possible to understand developmental processes and diseases 
even in the adult brain. For further information about develop-
ment and aging, refer to chapter 2.2 (development) and chapter 
2.3 (normal aging). 

3. Folding theories and models

Folding processes can be found in most biological structures 
that require area enlargement, and it was shown that brain folding 
is also driven by biomechanical concepts that can be described 
by mathematical models 3,6,15,19. It is assumed that the surface 
structure is driven by the organization of processing 13,18,48, that 
it is similar in mammals 6,8,9,19, and that folding abnormality such 
as lissencephaly or polygyria can help to understand the gyrifi-
cation process 3,13,14,19. A summary of mammal brain evolutional 
and abstract brain structure modeling is presented by Hofman 6, 
whereas a good introduction of up-to-date folding models can 
be found in previous reports 8,9,19. There are two major types of 
gyrification theories: (i) the axonal tension theorem and (ii) the 
active growth models.

The axonal tension model 13 is based on the idea that neuro-
logical processing is more strongly correlated to gyri than sulci 
and that both sides of a gyrus are strongly connected by fibers 
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that trigger the folding process to minimize connectivity costs. 
Although this theory looks elegant and has garnered support 17, 
it has four major drawbacks: (i) the predicted radial connections 
have not been observed macroscopically 19, rather in diffu-
sion images 49, where most fibers run in radial direction, rather 
between the opposing sides of gyri, (ii) the predicted tension 

has not been observed in macroscopic cuts 21, (iii) perforation 
of the WM after neuronal migration and before the onset of 
gyrification did not lead to less folding 2, and finally (iv) math-
ematical folding models without the simulation of axonal fiber 
tensions 15,18 have proved to be successful.

Figure 2: An illustration of human brain development and aging (A). It is initiated with the ballooning phase that strongly increases the area 
of the ventricular zone by both radial and tangential growth, where neuroepithelial cells are generated by cell division and migrate to the 
marginal zone forming a columnar migration and cortical layer pattern 1,5,45. The ongoing migration and initiation of the cortical connection 
increase the tangential growth by about HGW 20 (B) and gyrification shapes major structures such as the central sulcus. Because the Sylvian 
fissure lies hidden behind the subcortical structures, such as the basal ganglia and the thalamus, it profits less from neuronal migration and 
is finally overgrown by the surrounding brain regions (B). In humans, gyrification has nearly finished around birth and radial and tangential 
growth is balanced again, leading to a scaling of brain size with tissue growth and surface area enlargement (A). Over an individual’s life-
time, the WM keeps growing up to the age of around 40 years, whereas the cortex shrinks slightly every year. In aging, the WM also shrinks 
and shows tissue degeneration that appears in MRIs as WM hyperintensities (WMHs) with GM-like intensities. Overall, the tissue atrophy is 
accompanied by an enlargement of the ventricle, that helps to keep the shape of the brain relatively constant. The local folding (bending and 
buckling) compresses and stretches the cortical layers shown in (C) by keeping the volumes of each layer of the imaginary cortical columnar 
units A, B, and C relatively similar and facilitates the increasing individual local folding pattern in higher species 1,5,45. For comparison colorized 
real MR slices are shown in subfigure D.
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In active growth models, cortical folding is just a side 
product of cortical enlargement and external and internal con-
straints 3,7,9,15,18,19,39. In recent years, different computational 
folding models were introduced with varying combinations of 
radial and tangential growth 14,15,18,21,39,49, thickness 39, stiff-
ness 19,39, growing speed 19, and external constraints such as the 
skull or meninges 9,49. 

The work of Tallinen 15 was especially noteworthy and 
he investigated the development of specific folding patterns 
depending on WM stiffness, GM thickness, and the growing 
speed that allowed the creation of a naturally 3D folding pattern. 
It is further supported by the continuous work of the groups of 
Budday 14,39, Bayly 19, Toro 18, and Nie 49. The idea of folding 
prediction based on real MRIs that allows validation by longitu-
dinal studies in neonates is also remarkable 49.

4. Surface creation

The development of the brain as an organized surface has 
clearly outlined the potential of surface-based analysis, leading 
to the development of several software packages for automatic 
surface reconstruction and analysis of MRIs. Surface meshes are 
graph structures that describe a shape by a set of vertices V and 
faces F that connect the vertices. V is a nv × 3 vector of the xyz-
coordinates of each point, whereas F describes the triangles by a 
nf × 3 vector of vertex-indices (Figure 3):

S = [V,F]. (1)

Individual meshes can be generated on a regular volume grid 
by marching cubes or isosurface algorithms that generally require 
further pre- and post-processing. Surface measures are stored as 
vertex or face-wise vectors C that can be visualized as surface 
textures and analyzed similarly to VBM. Validation of surface 
reconstruction and measures is typically part of the method pro-
posal and often includes simulated 50,51, scan-rescan 51, expert-
classification 36, or large-scale datasets 52. The quality of the 
generated meshes and measures depends on the method used 27, 
the reconstructed structure and region 11,20, as well as the quality 
of the input data 47,53. In general, structural data that is suitable 
for VBM analysis also allows an adequate SBM analysis. The 
generation and analysis of surface measures will be part of sec-
tions 5 and 6, as the focus in this chapter is on mesh genera-
tion, modification, and mapping. Surfaces are usually generated 
using volumetric scans and require three major processing steps: 
(i) voxel-based preprocessing, (ii) the generation and optimiza-
tion of individual meshes, and (iii) the registration to common 
templates (Figure 3A). 

4.1. Voxel-based preprocessing

The voxel-based preprocessing is required to estimate map-
pings between individual and common brain templates (registra-
tion, see chapter 1.1), to classify different tissues (segmentation, 
see chapter 1.2) and prepare data for surface reconstruction. 

The classification of WM, GM, and CSF is driven by image 
intensity and a priori knowledge 10,22,54 and generally compre-
hends the extraction of the brain 10,54, the handling of image 
interferences such as noise 10,55 and inhomogeneity 10, and in 
some cases also the registration 54. Popular software packages 

such as BrainSuite , FSL , MIPAV, SPM 10,54, and VBM8/CAT  
applied common Gaussian-mixture, maximum-likelihood, 
maximum a posteriori probability, and expectation maximiza-
tion models 10,40,54,56. To increase accuracy and stability, recent 
approaches use brain-specific properties such as topological 
constrains 57, multimodal input images 10,54, longitudinal model-
ing 58, species or aging-specific templates and parameters 12,58, or 
other concepts entirely 59. The segmentation can further be used 
for intensity normalization of MRIs 43. 

Spatial registration estimates a mapping between the individ-
ual brain and common templates 60. They are typically realized 
as iterative processes and start with affine transformations and 
low frequency deformations that are systematically increased 
to reduce the anatomical variance of the subjects 46. Atlas maps 
that partition brains into different regions are often manually 
obtained in the native (subject) space and mapped to an aver-
age template space 24 or are directly generated in the template 
space 25. Besides manual-defined atlas maps, automatic parcel-
ing methods e.g., fMRI and dMRI connectivity maps have also 
been suggested 61,62.

4.2. Mesh generation

Shape analysis requires surfaces with identical topology 
with the same faces and a similar number of vertices that can 
be achieved in two manners. The direct approach (top-down) 
uses an existing template mesh and deforms it to the individual 
anatomy 63-65. This type of surface deformation works well 
for simple unfolded objects such as the skull 66, but runs into 
problems in the case of strongly folded structures 27. Therefore, 
bottom-up methods dominate surface reconstruction with the 
creation of individual objects and registrations to an average 
mesh, typically a sphere 11,12,21,22,27,51,56,67,68. 

Due to its wide set of cognitive function, the reconstruction of 
the neocortex of both cerebral hemispheres is most relevant and 
different reconstruction pipelines have been purposed, such as 
BrainSuite 69, BrainVoyager 68, Caret 12, CAT , ASP/CLASP 27,63, 
FreeSurfer 11, and MIPAV 67. Most methods reconstruct the 
GM-WM inner/WM) surface that allows a better initial rep-
resentation of the folded brain than the GM-CSF (outer/Pial) 
boundary that is often blurred in sulcal regions 22,27,56,63,67,68,70. 
They fixed and optimized the mesh topology and deformed it to 
the CSF-GM boundary to estimate cortical thickness 27,37,63,71. 
Some methods prefer the central surface to represent the cor-
tex  12,51,67. The central surface runs in the middle of the cortex 
and is the average of the inner and outer surface and is therefore 
less noisy compared to either the inner or outer surface.

Another approach is applied by BrainVisa  that uses the WM 
surface to create independent surfaces of the major sulci to esti-
mate and compare their morphology 48,69. Besides the cortex, 
reconstruction of other brain structures such as ventricles 72, 
hippocampi 73, basal ganglia 73, or fiber tracts 74 have been 
proposed. 

4.3. Mesh modification

The modification of surface meshes is required to optimize the 
initial meshes, prepare the surface registration, and create modi-
fied meshes for specific shape measures. Surface meshes can be 
modified in different ways, with the most important including: 
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(a) smoothing and inflation, (b) deformation, (c) remeshing, 
(d) decomposition, and (e) averaging (see Figure 4).

(a) Smoothing and inflation

Smoothing of mesh geometry reduces noise and artifacts by 
averaging the coordinates of neighbored vertices. At the same 
time, it removes anatomical details and unfolds the surface with 
growing number of iterations 12,37,75.

(b) Deformation

The movement of mesh vertices (deformation) allows small 
refinements by anatomical details, e.g., to handle longitudinal 
changes 49,64, midscale deformation such as the transformation 
of the brain surface position (e.g., from the GM-WM to the 
GM-CSF boundary 22,27,56,67,70), as well as large changes such 
as the transformation from one individual surface to another 
one 63,65,66. The deformation is controlled by internal (e.g., mesh 
connectivity) and external forces (e.g., vector fields based on 
image intensity).

(c) Remeshing and Repairing

Remeshing describes the modification of the mesh structure 
by resolution and topology changes. Remeshing algorithms 
can reduce or increase the number of vertices and faces by pre-
serving geometry, topology, and other properties to optimize 
computational and anatomical constrains, e.g., to guarantee a 
uniform sampling distance of the mesh after topology correc-
tion or deformation 76. Due to noise, artifacts, blood vessels, and 

resolution limits, the initial surface often contains topological 
defects (holes and handles), islands (unconnected components), 
singular vertices or complex edges, gaps, overlaps, intersections, 
or inconsistent orientations that require repairing by geometrical 
or topological correction of the mesh 68,77. 

(d) Parameterization

The Fourier analysis and synthesis describes the representa-
tion, approximation, and reconstruction of signals by sums of 
simpler (trigonometric) functions. It allows the application of 
spherical harmonics (a fast Fourier transformation on the sphere) 
for objects that can be simplified as a folded sphere such as the 
cortical hemispheres 33,78. The fraction of specific frequency can 
be used for shape characterization 78, specific folding measures 
(see section 4.5), and to remove specific frequency patterns (e.g., 
artifacts) 33,77. 

(e) Averaging

After surface registration (see next section), the relations 
between the vertices of multiple meshes allow the creation of 
an average mesh with the topology of one of the meshes and a 
mix of the coordinates of the linked vertices 63,67,75. The average 
mesh can be used for folding measures, data representation, and 
visualization. 

Figure 3: The preprocessing of structural MRIs often contains a voxel-based part that classifies the tissues and registers each brain to a tem-
plate (A). The processed images support the reconstruction of surfaces that facilitates further surface-based measures. Similar to the voxel-
based processing, a registration to a template mesh is required. For the final analysis, the VBM, DBM, and SBM data are smoothed to reduce 
individual variance and guarantee Gaussian distribution for statistical testing or average region-wise RBM analysis. (B) Surface meshes consist 
of vertices that are connected by faces and include multiple surface measures. (C) Smoothing on the surfaces is closer to the anatomical 
structure of the cortex and can improve analysis, especially in regions with deep folds 32,37. 
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4.4. Spatial normalization and spherical registration of 
meshes

To compare individual meshes, a stable mapping to a common 
template (e.g., a sphere) is required 16,36,75. The surface registra-
tion is the minimization of surface properties and shape features  
for small (intra-individual) 28, medium (inter-individual) 16,36,75, 
or large (inter-species) folding patterns 16. Although voxel-based 
registration works with high accuracy, surface-based registration 
profits by the improved characterization of the cortex by surface 
measures and matching techniques with advanced alignment of 

individual structures.   

4.5. Surface measures

There are various ways to describe structural properties of 
one or more multiple shapes: (a) projection of volumetric data, 
(b) (cortical) thickness, (c) surface relations, (d) curvature, 
(e) depth, (f) (span) width, (g) parameterization, and (h) land-
marks (see Figure 5).

Figure 4:  The surface creation and many shape measures require modification of the surface, e.g., to create smoother unfolded versions, repair 
the topology, or reduce the resolution for faster processing. The most typical operations are illustrated here for the central surface CS in 2D (A) 
and 3D (B): smoothing averages the coordinates of each vertex with its neighbors and remove artifacts, anatomical details, or the folding pat-
tern (a). Deformation moves the vertices based on internal (e.g., mesh connectivity) and external forces (e.g., tissue intensities) (b). Remeshing 
(reduction/refinement/repair) changes the complexity and topology of the mesh (c). Parameterization comprises the analysis and synthesis 
of signals by sums of simpler trigonometric functions (d). Averaging mix normalized meshes with different vertex positions but identical 
structures to create a common mesh (e). 
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(a) Value extraction
The extraction of intensity can be used to process volumetric 

data from different MRI-modalities such as T1, T2, PD, dMRI, 
qMRI, or fMRI at different layer-specific positions, e.g., to char-
acterize local myelinization 42, fiber orientation (DTI tensor field 
vs. surface normal) 79, fiber density 80, or tract geometry 81. For 
further information and discussion, see chapter 2.4 (cytoarchi-
tectonic tissues and MRI-based signal intensities). 

(b) Thickness

One of the best known and most frequently used shape mea-
sures is the cortical thickness (sometimes also named cortical 
depth) that describes the width of the GM ribbon as the voxel- or 
surface-based distance between the inner and outer boundary. 
There are multiple metrics to estimate the thickness, most impor-
tant are the (average) nearest neighbor Tnear (FreeSurfer) 37,63,71, 
the surface normal Tnormal

 63, the coupled surface Tlink
 27,37,63, 

the Eikonal TEikonal
 51,67, and the Laplacian metric TLaplacian

 51,82. 
Although these metrics lead to slightly different results that 
should not be confused, similar patterns have been observed 2

9,32,35,51,52,63,80,83. For further information and discussion, see 
chapter 1.2 (cortical thickness). 

(c) Surface relations

The complexity of a shape can be measured in relation to 
simplified unfolded version(s) with removed local details by 
(i) smoothing, (ii) morphologic operations such as closing or 
opening, (iii) averaging, (iv) down-sampling, or (v) other low-
frequency representations such as spherical harmonics 84. The 
most famous surface relation-based complexity measures are the 
gyrification index (GI) and the fractal dimension (FD). 

The GI was first defined as the relation between the length 
of the folded contour and its envelope contour within a slice 
85. With growing computational possibilities, the GI was auto-
mated regional surface-based 86 and continuous surface-based 
measures 18,87. The GI was applied in the context of evolution 17, 
development, aging, and diseases 18. 

The FD is a complexity ratio that describes how details in 
a pattern change with the scale at which it is measured 88. The 
classic example is given by measuring the coastline of England 
that increases with finer scaling, recording more and more local 
details. In a similar way, the cortical folding of the brain can 
be partially characterized by describing the local enlargements 
by increased folding 89. The FD of the brain can be defined by 
reducing volume 89 or mesh resolution 84. FD has been applied 
to normal development and aging 89, as well as in the context of 
diseases 84. 

The principle advantage of these measures is the intrinsic 
handling of the object size that allows simple comparisons for 
different individual and evolutional development stages 85,88. 
Interestingly, GI and FD end up with a similar complexity of 
about 2.5 for the human brain 84,87.

(d) Curvature

The local curvature of a surface can be illustrated in 2D as a 
circle that fits the local contour. In 3D, the so-called principal 
curvatures  are estimated for each vertex and allow the definition 
of a wide set of folding measures, with the four most prominent: 
(i) the (absolute) mean curvature 90,91, (ii) the Gaussian curva-
ture  86,90, (iii) the shape index 90, and (iv) the curvedness 90. In 

most cases, the cortical curvature is described as the average of 
the curvature of the inner and outer surface that is equivalent 
to the curvature of the central surface 91. Because the principle 
curvatures depend on brain size 78,91, more complex measures 
try to incorporate normalization factors 86,90. Nevertheless, most 
curvature measures correlate strongly, and restriction to the 
best fitting and simplest measures is recommended. Curvature 
measures were successfully used to describe changes in normal 
development, aging, and various diseases 86,90,91.

(e) Depth

The brain surface can be seen as a 3D signal 84 and its folding 
can be described by its frequency and amplitude. The amplitude 
can be characterized as the distance to a simplified surface, typi-
cally the hull surface of each hemisphere 82. Similar to thickness, 
multiple distance metrics are available: the nearest neighbor 16, 
the Eikonal 67, the Laplacian 82, and the geodesic distance met-
ric 92. The nearest neighbor metric can cross sulci and gyri and 
therefore have lower values (especially in the Sylvian fissure), 
whereas the geodesic distance have the highest values 92. Sulcal 
depth changes have been found in normal development, aging, 
and in various diseases 92. 

(f) (Span)width

Besides the sulcal depth as a folding amplitude, the frequency of 
folds is also an interesting parameter that allows various measures 
including width, span, diameter, or thickness that describe the full 
or half distance between two sides of a gyrus or sulcus 6,83,93. 
The width of the WM of a gyrus describes the local amount of 
myelinated fibers and how strong a region is connected to other 
regions 83, whereas the width of the CSF within a sulcus facilitates 
the investigation of local atrophy of WM and GM 93.

(g) Parameterization

A more abstract way of describing the folding is given by the 
spectral analysis of shape features 46,78. Even complex signals 
can be described by simpler signals, e.g., the decomposition into 
a set of cosine or sine waves of different wavelength. This can 
be done by analyzing stepwise unfolded versions of the surface 
by Laplace-Beltrami 94, Spherical Harmonic 33,34,84, or Wavelet 
decomposition 34. The spectral analysis of shape features allows 
a focus on specific spatial frequency bands that give the most 
important information to describe differences in the folding pat-
tern 46,78, where especially the second and third folding degree 
is relevant and not the basic shape of the brain or head 78. It is 
important to mention that low folding reconstruction (Fourier 
synthesis, see Figure 4B) creates an abstract pattern that sup-
ports no straightforward interpretation, e.g., as a development 
pattern 95. Parameterization has been applied in the context of 
development, aging, and various diseases 46,78.

(h) Landmarks

Besides global and continuous measurement, the subdivision 
of the cortex into gyral and sulcal regions 62,96, or the extrac-
tion of surface landmarks such as sulcal bottom lines and pits, or 
gyral crones and peaks 97-99 were developed to support region-
based analysis 69,96, to extract further anatomical features 97,98, or 
to improve registration accuracy 36. The classification of special 
regions and structures can be further improved by other modali-
ties such as dMRI 61 and fMRI 62. In particular, BrainVisa focuses 
on the analysis of sulcal surfaces and allows the estimation of 
sulcus-specific measures of length, width, and folding 23,93,99.
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Interim conclusion
There are many approaches that describe different properties 

of the surface shape, reflecting new opportunities, as well as 
challenges for morphologic brain analysis, due to overlapping 
and similar measures, variable dependency of brain size (scal-
ing invariance), and highly abstract measures that do not allow 
straightforward interpretation. A clear theory about the anatomi-
cal background of shape changes and the behavior of the applied 
measures is therefore essential. 

4.6. Surface analysis (SBM)

Surface analysis, especially the cortical thickness and folding 
measures, have become an important aspect of structural brain 
imaging. Similar to VBM, SBM can be evaluated globally, by 
regions, or continuously over the whole surface. Beyond that, it 
allows new and more subtle measures, anatomical correct regis-
tration and smoothing, and direct interaction with mathematical 
folding models.

In the previous chapter, several different types of surface 
measures were introduced. In particular, shape measures allow 

questions to be answered that VBM does not support. SBM 
allows the simplified decomposition of the GM volume VGM 
into surface area AGM and thickness TGM: 

VGM  = AGM · TGM, (2)

where the local folding can be neglected due to the expected 
compensation by the alteration of the cortical layers 1,13,20. 
The decomposition of volume is especially important in brain 
development, with increasing surface area (tangential growth), 
but decreasing cortical thickness due to WM formation that 
impedes GM volume analysis. 

The cortex is an organized surface 13,18,48 making surface 
registration preferable compared to volume-based methods. 
Besides, the registration and, in particular, the smoothing benefit 
from the surface-based organization of the brain, where the sur-
face distance between the top of opposing gyri is in most cases 
more than twice the direct distance 32,37,38 and a typical 8 mm 
volume-based smoothing blurred opposing sulci and gyri 37,71,75 
(see Figure 3). Smoothing has the general effect of rendering the 
data to be more normally distributed and thereby increases the 

Figure 5:  Conceptual surface measures: (a) intensity, (b) thickness, (c) surface relation, (d) curvature, (e) depth, (f ) span(width), (g) parameter-
ization, and (h) landmarks. Shown is the 2D illustration of the central (CS), inner (IS), outer surface (OS), and unfolded versions such as the hull 
surface SH, its counterpart SiH, and the filtered unfolded surface SF.
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validity of the subsequent statistical tests and reduces outliers by 
noise, artifacts, or preprocessing errors 32,37,38.

Recent computational folding models demonstrated that 
gyrification depends on surface properties and that such models 
are capable of forecasting individual folding pattern develop-
ment 15,18,19,39,49. Hence, they also predict which circumstances 
lead to current folding patterns and can be used to understand 
developmental diseases such as autism spectrum disorder, or 
schizophrenia 18,84. Surface measures are therefore an important 
source of validating and improving cortical folding models. On 
the other hand, folding models can help to refine surface gen-
eration by further constraints or improve brain phantoms such 
as the brain web phantom 50 by supporting anatomical changing 
(longitudinal) phantoms for method evaluation.

The major drawbacks of SBM are: (i) the high complexity, 
which makes it vulnerable to noise, artifacts, and errors, (ii) the 
considerable computational demands, and (iii) the sophisticated 
interpretation of some folding measures. Surface preprocessing 
is more complex and therefore in general more error-prone and 
it is expected to be less sensitive (due to its constraints), as well 
as less robust (because of its complexity), especially for subtle 
changes in brain plasticity. On the other hand, constraints can 
improve the robustness and the increased complexity comes 
along with more characteristic measures, anatomical advanced 
registration and smoothing that may compensate this handi-
cap 35,84. Because of the high amount of available measures, 
the challenge is to focus on measures that describe the expected 
changes or the use of big data techniques. A general limit of 
some gyrification measures is given by the arbitrary definition 
of unfolded structures, different metrics, and normalization fac-
tors. Many folding measures use unfolded structures that include 
the Sylvian but not the inter-hemispheric fissure, which might 
therefore bias the results. Furthermore, some folding measures 
are limited in describing the correct localization of changes that 
depend on deep WM tracts or the ventricle. Different metrics, 
e.g., for thickness or curvature, lead to slightly varying results, 
that limit the comparisons of different studies. It is also relevant 
to know if the used measures are intrinsic scaling invariant such 
as most relation measures that compare a folded and unfolded 
surface of the same subject, in contrast to most absolute mea-
sures, such as thickness, curvature, folding depth, and width, 
that depend on brain size and require covariates such as the 
total intra-cranial volume (TIV) for scaling normalization in the 
analysis 83. 

Similar to VBM, SBM relies on the quality of the original 
data, with recent studies showing a clear influence of image 
quality on structural measures, with lower quality leading to GM 
underestimation 100 making quality assurance an important side 
aspect of the analysis 47,53.

4.7. Conclusion

Shape properties are one of the key factors to understand the 
causes and effects of individual and evolutional folding develop-
ment 14,15,18,19,21,22. Because folding is mostly affected by early 
development, shape measures have a high potential to investigate 
developmental dysfunctions even in the adult brain. Surfaces 
come along with a wide set of new or improved measures and 
an anatomical convenient registration and smoothing model. 

The description of surface characteristics by surface measures 
is essential for enhanced mathematical folding models that can 
simultaneously improve surface reconstruction, measures, and 
their validation 15,18,19,84. Surface analysis offers a number of 
new measures with various definitions and properties that require 
careful evaluation, especially of abstract shape measures 46,78,84.
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