Cortical thickness and central surface estimation

Robert Dahnke *, Rachel Aine Yotter 1, Christian Gaser 1

Department of Psychiatry, University of Jena, Jahnstrasse 3, D-07743 Jena, Germany

Abstract

Several properties of the human brain cortex, e.g., cortical thickness and gyrification, have been found to correlate with the progress of neuropsychiatric disorders. The relationship between brain structure and function harbors a broad range of potential uses, particularly in clinical contexts, provided that robust methods for the extraction of suitable representations of the brain cortex from neuroimaging data are available. One such representation is the computationally defined central surface (CS) of the brain cortex. Previous approaches to semi-automated reconstruction of this surface relied on image segmentation procedures that required manual interaction, thereby rendering them error-prone and complicating the analysis of brains that were not from healthy human adults. Validation of these approaches and thickness measures is often done only for simple artificial phantoms that cover just a few standard cases. Here, we present a new fully automated method that allows for measurement of cortical thickness and reconstructions of the CS in one step. It uses a tissue segmentation to estimate the WM distance, then projects the local maxima (which is equal to the cortical thickness) to other GM voxels by using a neighbor relationship described by the WM distance. This projection-based thickness (PBT) allows the handling of partial volume information, sulcal blurring, and sulcal asymmetries without explicit sulcus reconstruction via skeleton or thinning methods. Furthermore, we introduce a validation framework using spherical and brain phantoms that confirms accurate CS construction and cortical thickness measurement under a wide set of parameters for several thickness levels. The results indicate that both the quality and computational cost of our method are comparable, and may be superior in certain respects, to existing approaches.

© 2012 Published by Elsevier Inc.

The cerebral cortex is a highly folded sheet of gray matter (GM) that lies inside the cerebrospinal fluid (CSF) and surrounds a core of white matter (WM). Besides the separation into two hemispheres, the cortex is macroscopically structured into outwardly folded gyri and inwardly folded sulci (Fig. 1). The cortex can be described by the outer surface (or boundary) between GM and CSF, the inner surface (or boundary) between GM and WM, and the central surface (CS) (Fig. 1). Cortical structure and thickness were found to be an important biomarker for normal development and aging (Fjell et al., 2006; Sowell et al., 2004, 2007) and pathological changes (Kuperberg et al., 2003; Rosas et al., 2008; Sailer et al., 2003; Thompson et al., 2004) in not only humans, but also other mammals (Hofman, 1989; Zhang and Sejnowski, 2000).

Although MR images allow in vivo measurements of the human brain, data is often limited by its sampling resolution that is usually around 1 mm³. At this resolution, the CSF is often hard to detect in sulcal areas due to the partial volume effect (PVE). The PVE comes into effect for voxels that contain more than one tissue type and have an intensity gradient that lies somewhere between that of the pure tissue classes. Normally, the PVE describes the boundary with a sub-voxel accuracy, but within a sulcus the CSF volume is small and affected by noise, rendering it difficult to describe the outer boundary in this region (blurred sulcus, Fig. 2). Thus, to obtain an accurate thickness measurement, an explicit reconstruction of the outer boundary based on the inner boundary is necessary. This can be done by skeleton (or thinning) methods or alternatively by model-based deformation of the inner surface. Skeleton-based reconstruction of the outer boundary is used by CLASP (Kim et al., 2005; Lee et al., 2006a,b; Cher and Evans, 2005), CRUISE (Han et al., 2004; Tosun et al., 2004; Xu et al., 1995), Caret (Van Essen et al., 2001), the Laplacian approach (Acosta et al., 2007; Haidar and Soul, 2006; Hutton et al., 2008; Jones et al., 2000; Rocha et al., 2007; Yezzi and Prince, 2003), and other volumetric methods (Eskildsen and Ostergaard, 2006, 2007; Hutton et al., 2008; Lohmann et al., 2003). Methods without sulcal modeling will tend to overestimate thickness in blurred regions (Jones et al., 2000; Lohmann et al., 2003) or must concentrate exclusively on non-blurred gyral regions (Sowell et al., 2004). Alternatively, cortical thickness may be estimated via deformation of the inner surface (FreeSurfer (Dale et al., 1999; Fischl and Dale, 2000), DiReCT (Das et al., 2009), Brainvoyager (Kriegeskorte and Goebel, 2001), Brainsuite (Shattuck and Leahy, 2001; Zeng et al., 1999) or coupled surfaces (ASP (Kabani et al., 2001; MacDonald et al., 2000). Considering that the accuracy of

* Corresponding author. Fax: +49 3641 934755.
E-mail addresses: robert.dahnke@uni-jena.de (R. Dahnke), rachel.yotter@uni-jena.de (R.A. Yotter), christian.gaser@uni-jena.de (C. Gaser).
1 Fax: +49 3641 934755.

1053-8119/ – see front matter © 2012 Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.neuroimage.2012.09.050

Please cite this article as: Dahnke, R., et al., Cortical thickness and central surface estimation, Neuroimage (2012), http://dx.doi.org/10.1016/j.neuroimage.2012.09.050
the measurement depends strongly upon the precision of cortical surface
reconstruction at the inner and outer boundaries, and that the computa-
tion time is often related to the anatomical accuracy of the reconstruc-
tion, such measurements may require intensive computational resources in
order to achieve the final measurement.

Here, we present a new volume-based algorithm, PBT (Projection
Based Thickness), that uses a projection scheme which considers
blurred sulci to create a correct cortical thickness map. For validation,
we compare PBT to the volumetric Laplacian approach and the
surface-based approach included in the FreeSurfer (v 4.5) software
package. If the results from PBT are approximately the same as that
achieved by FreeSurfer and a significant improvement over the
Laplacian approach, it may be concluded that PBT is a highly accurate
volume-based method for measuring cortical thickness. For situations
in which extensive surface analysis is not required, PBT would allow
the exclusion of cortical surface reconstruction steps with no loss of
accuracy for cortical thickness measurements.

We also propose a suite of test cases using a variety of phantoms
with different parameters as a suggestion for how a cortical thickness
measurement approach could be rigorously tested for validity and
stability. Previously published validation approaches that used a
spherical phantom (Acosta et al., 2009; Das et al., 2009) often
treated only one thickness and curvature (radii) of the inner and
outer boundary. The problem is that the measure may work well for
this special combination of parameters, but performance can change
during different radii. Another limitation is that this phantom describes
only areas where the CSF intensity is high enough, but most sulcal
areas (that comprise over half of the human cortex) are blurred.

Our test suite directly addresses these concerns.

The cortical thickness map may also be subsequently used to gen-
erate a reconstruction of the CS. Compared to the inner or outer sur-
face, the CS allows a better representation of the cortical sheet (van
Essen et al., 2001), since neither sulcal or gyral regions are over- or
underestimated (Scott and Thacker, 2005). As the average of two
boundaries, it is less error-prone to noise and it allows a better mapp-
ing of volumetric data (Liu et al., 2008; Van Essen et al., 2001)

Generally, a surface reconstruction allows surface-based analysis that is
not restricted to the grid and allows metrics, such as the gyri
index (Schaer et al., 2008) or other convolution measurements
(Luders et al., 2006; Mietchen and Gaser, 2009; Rodriguez-Carranza
et al., 2008; Toro et al., 2008), that can only be measured using sur-
face meshes (Dale et al., 1999). It provides surface-based smoothing
that gives results superior to that obtained from volumetric smooth-
ing (Lerch and Evans, 2005). Furthermore, surface meshes allow a
better visualization of structural and functional data, especially
when they are inflated (Fischl et al., 1999) or flattened (Van Essen
and Drury, 1997). Due to these considerations, we have explored
the quality of the cortical surface reconstructions.

Material and methods

We start with a short overview about the main steps of our meth-
od and the Laplacian approach; algorithmic details are separately de-
scribed in the following subchapters.
MRI images are first segmented into different tissue classes using VBM8 (Fig. 2; see Segmentation). This segmentation is used for (manual) separation of the hemispheres and removal of the cerebellum with hindbrain, resulting in a map SEP. This map creates the map SEGFP, a masked version of SEG with filled ventricular and subcortical regions. To take into account the small sulci with thicknesses of around 1 mm, SEGFP was linearly interpolated to 0.5 × 0.5 × 0.5 mm³ (Hutton et al., 2008; Jones et al., 2000).

For each GM voxel, the distance from the inner boundary was estimated within the GM using a voxel-based distance method (see Distance measure). The result is a WM distance map WMD, whose values at the outer GM boundary represent the GM thickness. These values at the outer boundary were then projected back to the inner boundary, resulting in a GM thickness map GMT. The relation between the WMD and GMT maps creates the percentage position map PP that is used to create the CS at the 50% level (see Projection-based thickness).

As a basis of comparison, we constructed another CS using the Laplacian-based thickness measure (Jones et al., 2000) on the filled tissue segmentation map to create another set of GMT and PP maps.

This method requires an explicit sulcal reconstruction step (Bouix and Kolekem, 2000) (see Laplacian-based thickness).

A topology correction based on spherical harmonics was used to correct the topology of the surfaces generated with the PBT and the Laplacian approach (Yotter et al., in press).

For validation, a set of spherical (SP; see Spherical phantoms) and brain phantoms (BP; see Brain phantoms) with uniform thickness were used to simulate different curvature, thickness, noise, and resolution levels. Since thickness and the location of the cortical surfaces were known, the two data sets could be directly compared. For thickness RMS error, the measured thickness was reduced by the expected thickness. Known, the two data sets could be directly compared. For thickness RMS error, the measured thickness was reduced by the expected thickness. The intensity gradient between B(x) and G(x) allows a precise estimation of the boundary point P(x), which is used to estimate the distance of x to the boundary.

In a more formal way, we solved the following Eikonal equation:

\[F(x) \| \nabla D(x) \| = 1, \quad \text{for } x \in \Omega. \]

\[D(x) = 0, \quad \text{for } x \in \Gamma. \]

where x is a voxel, Ω is the object (the WM or the CSF and background), D(x) is the Eikonal distance map, and F(x) is the Eikonal speed map (FWM(x) for the WM distance and FC(x) for the CSF distance) that is given by the image intensity of SEGFP:

\[F(x) = \text{min}(1, \max(0, SEGFP(x) - 1)), \]

\[FC(x) = \text{min}(1, \max(0, 3 - SEGFP(x))). \]

In GM areas, FWM(x) has a high “speed” which results in shorter distances, whereas in CSF areas the “speed” is very low and thus results in longer distances, whereas FC(x) allows high speeds in GM and CSF areas, but not in WM regions. Because the distance map D(x) contains distortions, it is only used to find the closest object voxel for each GM voxel x ∈ Ω:

\[B(x, \Omega, \Gamma, F), \]

and to calculate the Euclidean distance D(x) between the GM voxel x and its nearest WM voxel B(x, Ω, Γ, F):

\[D(x) = \| x - B(x, \Omega, \Gamma, F) \|_2. \]

We solve the above equations as follows: By solving the Eikonal equation within Ω, we also note the closest WM voxel B(x). To allow sub-voxel accuracy, the normalized vector between x and B(x) is used to estimate a point G(x) within one voxel distance to B(x)

\[G(x) \]

The intensity gradient between B(x) and G(x) can then be used to estimate the exact boundary of Γ.

Projection-based thickness

For simplification, we will use the terms of the GM, WM, and CSF probability maps for the operations, even though only the map SEGFP is used. Cortical thickness can be described as the sum of the inner (WMD, Fig. 3b2) and outer (CSFD, Fig. 3b3) boundary distance.

To take into account the asymmetrical structures, we used the Eikonal equation with a non-uniform speed function F(x) to find the closest boundary voxel B(x) of a GM voxel x without passing a different boundary. To allow sub-voxel accuracy, the normalized vector between x and B(x) is used to find a point G(x) between x and B(x). The intensity gradient between B(x) and G(x) allows a precise estimation of the boundary point P(x), which is used to estimate the distance of x to the boundary.

Distance measure

To estimate a point within the GM using a voxel-based distance method (see Distance measure). The result is a WM distance map WMD, whose values at the outer GM boundary represent the GM thickness. These values at the outer boundary were then projected back to the inner boundary, resulting in a GM thickness map GMT. The relation between the WMD and GMT maps creates the percentage position map PP that is used to create the CS at the 50% level (see Projection-based thickness).

As a basis of comparison, we constructed another CS using the Laplacian-based thickness measure (Jones et al., 2000) on the filled tissue segmentation map to create another set of GMT and PP maps.

This method requires an explicit sulcal reconstruction step (Bouix and Kolekem, 2000) (see Laplacian-based thickness).

A topology correction based on spherical harmonics was used to correct the topology of the surfaces generated with the PBT and the Laplacian approach (Yotter et al., in press).

For validation, a set of spherical (SP; see Spherical phantoms) and brain phantoms (BP; see Brain phantoms) with uniform thickness were used to simulate different curvature, thickness, noise, and resolution levels. Since thickness and the location of the cortical surfaces were known, the two data sets could be directly compared. For thickness RMS error, the measured thickness was reduced by the expected thickness. In addition to the spherical phantoms with equal thickness, we used the Collins brain phantom with different noise levels (Collins et al., 1998) and a real data set of 12 scans of the same subject of our database (see Real data) to compare our results to FreeSurfer 4.5. Because the real thickness of both data sets is unknown, we compare the results of each tested surface to the results of a surface that was generated on an averaged scan. RMS error was calculated for all vertices of a surface, including vertices of the filled subcortical regions and the corpus callosum. For these data sets, we evaluated the number of topological errors using Caret. To count the number of defects, the uncorrected CS was used for PBT and Laplacian, whereas for FreeSurfer the uncorrected WM surface was used. The CS of FreeSurfer was generated via Caret, where the positions of CS vertices were given by the mean positions of corresponding vertices of the inner and outer surface. Thickness RMS error was estimated based on the original FreeSurfer thickness results.

Segmentation

To achieve exact and stable results for thickness measures, the segmentation plays an important role. In principle, any segmentation for GM, WM, and CSF can be used. The segmentation could be binary maps, but to achieve more stable and exact results, it is important to use probability maps that are able to describe the boundary positions with sub-voxel accuracy (Hutton et al., 2008). Furthermore, inclusion of an additional noise removal step increases the accuracy and stability of the thickness measurements (Coupe et al., 2008). We used the VBM8 toolbox (revision 388) for SPMs (Ashburner and Friston, 2005) (revision 4290) for segmentation of all T1 images, which includes an optimized Rician non-local mean (ORNLM) (Coupe et al., 2008) and a Gaussian Hidden Markov Random Field (GHMRF) (Cuadra et al., 2005) filter for noise reduction (NR). The probability tissue maps CSF, GM, and WM are combined in one probability image SEG (Tohka et al., 2004). Pure tissue voxels are coded with integers (background = 0, CSF = 1, GM = 2, WM = 3), whereas values between integers describe the percentile relation between the tissues. For example, a voxel with an intensity of 2.56 contains 44% GM and 56% WM and a value of 1.92 contains 92% GM and 8% CSF. Hence, tissue boundaries are at 0.5 between background and CSF, 1.5 between CSF and GM and 2.5 between GM and WM. Note that this map is only able to describe two tissue classes per voxel. However, this does not degrade our analyses, because most anatomical images do not provide more information for the segmentation. Furthermore, most regions with no GM layer, such as the brainstem or the near the ventricles, are cut or filled and thus are not included in the analysis.
Algorithm flow diagram:

Input: SEG₀ image (B1, Fig. 2)

1. WM and CSF distance calculation (b2 & b3, Eq. 1-6)
2. GMT initialization (b4, Eq. 7)
3. GMT projection (GMT₁ & direct GMT estimation (GMT₀) (b5 & b6, Eq. 10.11))
4. Combination of GMT₁ and GMT₂ (b7, Eq. 12)
5. Calculation of percentage position (b8, Eq. 13)
6. Central surface (CS) estimation and GMT mapping (b9)
7. Projection scheme:
 a) Initial case:
 i. If there are no successors, then voxel v is a border voxel and the WMD distance WMD sets its thickness thickness (Eq. 8, succ(v)).
 ii. If there are successors, then voxel v is given as the mean thickness of its successors thickness value.
 b) Projection case:
 i. If there are successors of voxel v available, then the thickness of voxel v is given as the mean of the thickness values of its successors.
 ii. If there are no successors, then voxel v is a local maximum and its thickness is related to its size.

Blurring of the outer boundary in sulcal regions due to the PVE leads to an overestimation of the real distance and finally to an overestimation of the cortical thickness. To get the correct values in these regions, PBT uses a modified version GMT₁ (b4) of the WMD, in which the local maximum describes the position of the outer boundary and the correct thickness. It now uses the successor relation succ(v) of a voxel v (Eq. (8)), given by the WM distance WMD to project thickness values from the outer boundary (b4) over the whole GM (b5). PBT additionally uses the direct GM thickness GMT₀ (b6) — which is overestimated in blurred areas, but helps to reduce artifacts such as blood vessels — to create a final map GMTF (b7) of the minimum thickness from both thickness maps. After estimation of cortical thickness, a percentage position map PP is generated to create the central surface (CS). The WM distance map allows the de projection of successors (neighbors of a voxel) onto it. The projection scheme shown in subfigure (c) uses the WM distance map to project the maximum local WM distance that is equivalent to the local thickness to other voxels. The WM distance map allows the definition of successors (neighbors of a voxel with a slightly larger distance than v) and siblings (neighboring voxel with a similar distance to v), and a voxel v gets the mean thickness of its successors. If a voxel has no successors, then it is located at the outer boundary and its WM distance is related to its size.

We now want to describe this process in a more formal way, starting with the WMD:

\[WMD(v) = \begin{cases} D_{Eu}(v, GM > 0, WM, F_{WM}) & \text{if } GM(v) > 0, \\ 0 & \text{otherwise,} \end{cases} \]

where \(D_{Eu} \) gives the Euclidean distance of a voxel v to the nearest WM boundary that was found by solving the Eikonal equation for the speed map \(F_{WM} \) (Eq. (2)). The distance to the CSF boundary is now given by:

\[CSFD(v) = \begin{cases} -D_{Eu}(v, CSF & GM, CSF, & BG, 1) & \text{if } GM(v) > 0 & CSF(v) > 0, \\ D_{Eu}(v, GM > 0, CSF & BG, F_{CSF}) & \text{if } GM(v) > 0 & CSF(v) > 0, \\ 0 & \text{otherwise.} \end{cases} \]

where BG (background) describes all voxels that contain no tissue.

The cortical thickness map GMT₁ is initialized as a modified version of the final map GMTF (b7) of the minimum thickness from both thickness maps. After estimation of cortical thickness, a percentage position map PP is generated to create the CS surface (CS). The projection scheme shown in subfigure (c) uses the WM distance map to project the maximum local WM distance that is equivalent to the local thickness to other voxels. The WM distance map allows the definition of successors (neighbors of a voxel with a slightly larger distance than v) and siblings (neighboring voxel with a similar distance to v), and a voxel v gets the mean thickness of its successors. If a voxel has no successors, then it is located at the outer boundary and its WM distance is related to its size.
of the WMD, because the WMD describes the distance only to the
center of a GM voxel. GM voxels with more than 50% CSF need addi-
tional correction by the CSFD, in which the minimum correction is
developed within the framework of our method and illustrates the idea
for most relevant examples in

\[\text{GMT}_i(v) = WMD(v) + \min(CSF(v), \text{res} / 2), \]

(7)

Let \(N_{26} \) be the 26-neighborhood of a voxel \(v \), and \(D_{26} \) be the associ-
ated distance of \(v \) to its neighbors. A voxel \(n \in N_{26} \) is a successor of
the voxel \(v \) if the WM distance of \(s \) meets the following conditional:

\[g_{\text{succ}}(v, n) = \begin{cases} 1 & \text{if } (|WMD(v) + a_1 + D_{26}(n) - WMD(n)| < |WMD(v) + a_2 + D_{26}(n)|) \\ 0 & \text{otherwise} \end{cases} \]

(8)

where \(0 < a_1, a_2 < 2 \) are weights depending on the used distance
metric; these weights allow the inclusion of more thickness informa-
tion from neighboring voxels to achieve a smoother thickness map. If
there are no successors, then \(v \) is a border voxel and the WM distance
sets its thickness. The lower threshold \(a_1 \) defines the boundary be-
tween siblings and successors, whereas the higher threshold \(a_2 \) is a
limit for direct successors. An \(a_1 \) threshold that is too low will create
too many siblings and lead to smoother results, while an \(a_2 \) threshold
that is too high will lead to coarser results. Likewise, an \(a_2 \) threshold
that is too low will exclude more neighbors of \(v \) from the successor
relationship and lead to less smooth images and in the worst-case
to a breaking of the projection because all possible successors are ex-
cluded, whereas an \(a_2 \) threshold that is too high will lead to
oversmoothed results with overestimation in gyral regions. For a
quasi-Euclidean metric, which is not useful for cortical thickness but
acceptable for the PP map, \(a_1 \) and \(a_2 \) are equal and can be set by the
distance of \(v \) to its neighbors. Good results with minimal smoothing
were achieved using \(a_1 = 0.5 \) and \(a_2 = 1.25 \). If there are no successors,
then \(v \) is a border point and the WM distance sets its thickness, else it
uses the mean of all successors:

\[p_t(v) = \frac{\sum_{n \in N_{26} \cap \text{succ}(v, n)} \text{GMT}_i(n)}{\sum_{n \in N_{26} \cap \text{succ}(v, n)}}, \]

(9)

308

The initial thickness \(\text{GMT}_i \) can now be used to estimate the final
projection-based thickness map \(\text{GMT}_p \), by projecting the values over
the GM region:

\[\text{GMT}_p(v) = \max(\text{GMT}_i(v), p_t(v)), \]

(10)

313

This mapping can be done in \(O(n) \) time using the same principle
described for voxel-based distance calculation (Rosenfeld and John,
1966). To reduce overestimations in the \(\text{GMT}_p \) map due to GM frag-
ments such as blood vessels or dura mater, the direct thickness map:

\[\text{GMT}_d(v) = \text{CSF}(v) + WMD(v), \]

(11)

is used to create the final thickness map:

\[\text{GMT}_f(v) = \min(\text{GMT}_d(v), \text{GMT}_g(v)) / \text{res}, \]

(12)

that is corrected for the voxel resolution \(\text{res} \). The percentage position
map PP can now be described as:

\[PP(v) = (\text{GMT}_f(v) - WMD(v) / \text{res}) / \text{GMT}_f(v) + (\text{SEG}_{pp}(v) > 2.5). \]

(13)

Finally, the CS is generated from the PP map and reduced to
around 300,000 nodes using standard Matlab functions. Each vertex
of the mesh is assigned a thickness value via linear interpolation of
the closest GM thickness map values. Fig. 3 shows the flow diagram
of our method and illustrates the idea for most relevant examples in
2D.

PBT was used to reconstruct problematic regions in an additional
preprocessing step that estimates the cortical thickness in the GM
with flipped boundaries. These problematic regions are those that
are highly susceptible to errors due to the PVE, which creates prob-
lems in both gyral and sulcal regions. In the gyral case, thin WM
structures are blurred rather than the CSF blurring that occurs in nar-
sural sulcal regions. This occurs most frequently in the superior
temporal gyrus, the cingulate gyrus, and the insula, and may be
addressed similarly to the idea proposed in (Cardoso et al., 2007)
for segment-
mentation refinement. If a voxel of the inverse thickness map has
lower thickness than the original thickness map and if the thickness
of both is larger than 2 mm while SEG > 2.0, we expect that the in-
verse thickness map has identified a gyrus that is blurred by the
PVE. For these blurred regions, the thickness and percentage position
of the inverse maps are used.

Laplanian-based thickness

The Laplacian approach requires an explicit sulcal reconstruction
step (Jones et al., 2000; Tosun et al., 2004) that uses a skeleton map to
reconstruct the outer boundary in blurred regions of the segment
image \(\text{SEG}_{pp} \). (Fig. 4b2) by changing the tissue class of the re-
constructed boundary voxels from GM to CSF resulting in a map \(\text{SEG}_{PPS} \)
(Figs. 4b3, 4a). To create the skeleton map \(S \), we first generate WW and
CSF distance maps with the same distance measure used for PBT to
allow asymmetrical structures. We then find areas with high divergence
of the gradient field, resulting in a map SR. This map is normalized within
a low and a high boundary \(\text{SEG} \), to 0.5 and \(\text{SEG} \) = 1.0 resulting in the
skeleton map \(S \) (Bouix and Kaleem, 2000), with & as a logical AND op-
erator:

\[SR = \nabla|\nabla(WMD)| \quad S = (SR \& \left((SR > \text{SEG})(\text{SEG} < \text{SEG}) \right) - \text{SEG})(\text{SEG} \geq \text{SEG}) \].

(14)

360

The skeleton map accurately represents the sulci that have been
blurred in the tissue segmentation process. We correct all voxels of
\(\text{SEG} \geq 1 \) by:

\[\text{SEG}_{PPS} = \text{SEG}_{PP} - \max(1.2 - S, (\text{SEG}_{PP} - 1)) \]

(15)

that is corrected for the voxel resolution \(\text{res} \). The changing of GM voxels to CSF voxels leads to an under-
estimation of the GM volume and local thickness, which will be
considered later. The corrected segment map \(\text{SEG}_{PPS} \) can now be
used to solve the Laplace equation between the GM/WM and GM/CSF
boundary:

\[\nabla^2 \psi = \frac{\partial \psi}{\partial x^2} + \frac{\partial \psi}{\partial y^2} + \frac{\partial \psi}{\partial z^2} = 0. \]

(16)

370

The above equation is solved iteratively using an initial potential
image with Dirichlet boundary conditions. The WM (\(\text{SEG}_{PPS} \geq 2.5 \))
forms the higher potential boundary with values of 1, whereas the
CSF (\(\text{SEG}_{PPS} < 1.5 \)) represents the lower potential boundary with
values of 0. To accelerate convergence, all GM voxels are initialized
with a potential of 0.5. Eq. (17) is applied only to GM voxels
\(\text{SEG}_{PPS} > 1.5 \) and \(\text{SEG}_{PPS} < 2.5 \) and simply describes the mean of the
six direct neighbors of a voxel:

\[\psi_i + 1(x, y, z) = \frac{1}{6} \left(\psi_i(x + \Delta x, y, z) + \psi_i(x - \Delta x, y, z) + \psi_i(x, y + \Delta y, z) + \psi_i(x, y - \Delta y, z) + \psi_i(x, y, z + \Delta z) + \psi_i(x, y, z - \Delta z) \right). \]

(17)

380

The solution has converged when the error \(\varepsilon = (\psi_{i+1} - \psi_i) / \psi_{i-1} \)
is below a threshold value of \(10^{-3} \). After generating the potential
image, we calculate the gradient field N of the Laplace map as the simple normalized two-point difference for each dimension. For example, along the x-direction the normalized potential difference N_x is calculated as follows:

$$N_x = \frac{(\Delta \psi/\Delta x)}{\sqrt{(\Delta \psi/\Delta x)^2 + (\Delta \psi/\Delta y)^2 + (\Delta \psi/\Delta z)^2}}.$$ (18)

Three normalized potential difference maps are then created: N_x, N_y, and N_z (Fig. 4b3 – blue vectors). From these maps, we calculate gradient streamlines for every GM voxel. A streamline s is a vector of points $s_1, s_2, ..., s_9$ that describes the path from the starting point s_1 to a border. The following point, s_{n+1}, of s_i is estimated by using the Euler’s method, or by adding the weighted normalized gradient $N(s_i)$ to s_i:

$$s_{n+1} = s_n + hN(s_n) + hN_y(s_n) + hN_z(s_n).$$ (20)

The weight h describes the step size of the streamline calculation and was set to 0.1 mm as a compromise between speed and quality. For every GM voxel v, we calculate the streamline $s_{GM}(v)$ starting at the position of v to the WM boundary and other streamline $s_{CSF}(v)$ from v to the CSF boundary. To calculate $s_{CSF}(v)$, it is necessary to use the inverse gradient field. The length of a streamline $L(s)$ can be found by summing the Euclidean distance of all points s_i to their successor s_{i+1}:

$$L(s) = \sum_{i=1}^{n-1} \sqrt{(s_{i+1} - s_i)^2 + (s_{i+1} - s_i)^2 + (s_{i+1} - s_i)^2}.$$ (21)

We correct for errors introduced by the skeleton S using the volume difference between the uncorrected tissue segment SEG_{PP} and the corrected tissue segment SEG_{PPC}:

$$L_c = L(s) + SEG_{PP} \left(s_{ax}, s_{ay}, s_{az} \right) - SEG_{PPC} \left(s_{ax}, s_{ay}, s_{az} \right).$$ (22)

The summation of the length of both streamlines $s_{WM}(v)$ and $s_{CSF}(v)$ gives the GM thickness at voxel v (Figs. 4b5 and b6). The RPM can also be calculated using the values for the lengths of $s_{WM}(v)$ and $s_{CSF}(v)$, with all WM voxels set to one:

$$GMT(v) = L \left(s_{WM}(v) \right) + L \left(s_{CSF}(v) \right).$$ (23)

$$PP(v) = L \left(s_{CSF}(v) \right) / GMT(v) + \left(SEG_{PPC} > 2.5 \right).$$ (24)

(Figs. 4b7 and b8). Finally, the CS surface is generated at a resolution of 0.5 mm from the PP map and reduced to around 300,000 nodes using standard Matlab functions. Each vertex of the mesh is assigned a thickness value via a linear interpolation of the closest GMT map values.

Spherical phantoms

A variety of spherical phantoms were used for validation. For the standard gyral case, the spherical phantom consisted of a cortical GM ribbon around a WM sphere in the center of the tissue map (Fig. 5). To explore the ability to reconstruct blurred sulcal regions, a second spherical phantom was constructed such that it contained a cortical GM ribbon sandwiched in between two WM regions: the center sphere and an outer shell. Between the ribbon boundaries, a small gap allows testing of the influence of the presence of CSF. To simulate asymmetrical structures, the size of the second ribbon was defined as a ratio of the size of the first GM ribbon. To realize this phantom with PVE, a distance map SPD that measures the distance with the inverse gradient field allows the creation of streamlines that follow the vectors to each boundary to measure the distance (b4–b6). To avoid an underestimation due to sulcus reconstruction (b5), the CSF distance $L(s_{CSF}(v))$ was corrected for changes from the sulcus reconstruction (Eq. (21)). The addition of both distance maps gives the cortical thickness map GMT that allows the creation of the percentage position map PP, which in turn is used to create the CS and map cortical thickness onto the surface.

Please cite this article as: Dahnke, R., et al., Cortical thickness and central surface estimation, NeuroImage (2012), http://dx.doi.org/10.1016/j.neuroimage.2012.09.050

Fig. 4. Subfigure (a) shows a flow diagram of the Laplacian approach, where subfigure (b1–b8 with simplified titles) shows 2D illustrations of the volume maps of subfigure (a). First, a skeleton based on the WM distance map (see Fig. 3b2) is used to reconstruct blurred sulcal regions (b1–b3). Next, the Laplace equation is solved in the GM area and a vector field N is generated (b3). This vector field allows the creation of streamlines that follow the vectors to each boundary to measure the distance (b4–b6). To avoid an underestimation due to sulcus reconstruction (b5), the CSF distance $L(s_{CSF}(v))$ was corrected for changes from the sulcus reconstruction (Eq. (21)). The addition of both distance maps gives the cortical thickness map GMT that allows the creation of the percentage position map PP, which in turn is used to create the CS and map cortical thickness onto the surface.
ical and technical considerations.

The range of values chosen for the parameters was based on anatomical structure the outer ribbon has a different thickness and curvature. Thickness is only evaluated for the inner ribbon because for asymmetry.

Table 1 shows the values of each parameter to be tested. To test sulcal width and position, more than one default value was necessary due to high variance in the results. For example, a symmetrical sulcus will produce better results than an asymmetric sulcus.

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Curvature</th>
<th>Thickness</th>
<th>PVE vs no PVE</th>
<th>V vs. S</th>
<th>Type</th>
<th>Sulcus width</th>
<th>rel. sulcus pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranges</td>
<td>1.0:0.01:5.0 (401)</td>
<td>0.0:0.01:5.0 (501)</td>
<td>0 1 (2)</td>
<td>V S (2)</td>
<td>CGW WGW (2)</td>
<td>0.0:0.01:2.0 (200)</td>
<td>0.2:0.001:0.8 (601)</td>
</tr>
<tr>
<td>Defaults</td>
<td>2.5 (1)</td>
<td>2.5 (1)</td>
<td>1 (1)</td>
<td>S (1)</td>
<td>CGW WGW (2)</td>
<td>0.0:0.01:1.0 (3)</td>
<td>0.1:0.2:0.7 (3)</td>
</tr>
</tbody>
</table>

Please cite this article as: Dahnke, R., et al., Cortical thickness and central surface estimation, NeuroImage (2012), http://dx.doi.org/10.1016/j.neuroimage.2012.09.050
Results were then compared to the Laplacian approach, and, wherever possible, to FreeSurfer. The first test consisted of the set of spherical phantoms, which were used to test the approaches over a wide set of parameters under simple but precise conditions. The second test, consisting of the brain phantoms, was used to explore the performance of the approaches under the more realistic condition of a highly convoluted surface with equal thickness. For the third test, we used the Collins phantom with different noise levels, both to add more realism and to directly compare the results to the FreeSurfer software package. Finally, we used real MR data of one subject for a test–retest of all three methods.

Spherical phantoms

Over all test parameters, PBT shows better results than the Laplacian approach for both thickness estimation and surface generation (Fig. 7a). As expected, both methods have higher RMS error for thickness estimation than for surface generation, both produce better results with PVE, and both perform better for the simpler gyral case compared to the sulcal case. The voxel-based results of the Laplacian approach are much worse than after projection to the surface, whereas PBT produced equally accurate results due to the smoothness parameter of the projection. Compared to gyral regions, sulcal regions show higher RMS error, which is strongly related to the width of the sulcal gap and its relative position.

Predicted by the sampling theorem, both show a strong increase of RMS error below sampling resolution for thickness measurements, but not for surface generation (Figs. 7b and c).

Furthermore, the Laplacian approach had larger fluctuations of error across the test cases. Relatively small variations of the test parameters led to vastly different error values (Fig. 7c above 2.5 mm). This strong variation can only be found if the step size of the parameter is very small—around 0.01 mm. Especially, asymmetrical structures (Fig. 7d) and small sulcal gaps (Fig. 7e) vastly increase the RMS error of the Laplacian approach.

For the Laplacian approach, we were able to produce good results such as those published in the literature only for cases with relatively large CSF regions and low asymmetry, whereas PBT produced more exact and stable results over the full range of test parameters.

Brain phantoms

For the brain phantoms, if the two approaches are compared, the PBT method has much lower RMS error for the thickness measurements and applicable, to FreeSurfer. The first test consisted of the set of spherical phantoms, which were used to test the approaches over a wide set of parameters under simple but precise conditions. The second test, consisting of the brain phantoms, was used to explore the performance of the approaches under the more realistic condition of a highly convoluted surface with equal thickness. For the third test, we used the Collins phantom with different noise levels, both to add more realism and to directly compare the results to the FreeSurfer software package. Finally, we used real MR data of one subject for a test–retest of all three methods.

Spherical phantoms

Over all test parameters, PBT shows better results than the Laplacian approach for both thickness estimation and surface generation (Fig. 7a). As expected, both methods have higher RMS error for thickness estimation than for surface generation, both produce better results with PVE, and both perform better for the simpler gyral case compared to the sulcal case. The voxel-based results of the Laplacian approach are much worse than after projection to the surface, whereas PBT produced equally accurate results due to the smoothness parameter of the projection. Compared to gyral regions, sulcal regions show higher RMS error, which is strongly related to the width of the sulcal gap and its relative position.

Predicted by the sampling theorem, both show a strong increase of RMS error below sampling resolution for thickness measurements, but not for surface generation (Figs. 7b and c).

Furthermore, the Laplacian approach had larger fluctuations of error across the test cases. Relatively small variations of the test parameters led to vastly different error values (Fig. 7c above 2.5 mm). This strong variation can only be found if the step size of the parameter is very small—around 0.01 mm. Especially, asymmetrical structures (Fig. 7d) and small sulcal gaps (Fig. 7e) vastly increase the RMS error of the Laplacian approach.

For the Laplacian approach, we were able to produce good results such as those published in the literature only for cases with relatively large CSF regions and low asymmetry, whereas PBT produced more exact and stable results over the full range of test parameters.

Brain phantoms

For the brain phantoms, if the two approaches are compared, the PBT method has much lower RMS error for the thickness measurements and applicable, to FreeSurfer. The first test consisted of the set of spherical phantoms, which were used to test the approaches over a wide set of parameters under simple but precise conditions. The second test, consisting of the brain phantoms, was used to explore the performance of the approaches under the more realistic condition of a highly convoluted surface with equal thickness. For the third test, we used the Collins phantom with different noise levels, both to add more realism and to directly compare the results to the FreeSurfer software package. Finally, we used real MR data of one subject for a test–retest of all three methods.

Spherical phantoms

Over all test parameters, PBT shows better results than the Laplacian approach for both thickness estimation and surface generation (Fig. 7a). As expected, both methods have higher RMS error for thickness estimation than for surface generation, both produce better results with PVE, and both perform better for the simpler gyral case compared to the sulcal case. The voxel-based results of the Laplacian approach are much worse than after projection to the surface, whereas PBT produced equally accurate results due to the smoothness parameter of the projection. Compared to gyral regions, sulcal regions show higher RMS error, which is strongly related to the width of the sulcal gap and its relative position.

Predicted by the sampling theorem, both show a strong increase of RMS error below sampling resolution for thickness measurements, but not for surface generation (Figs. 7b and c).

Furthermore, the Laplacian approach had larger fluctuations of error across the test cases. Relatively small variations of the test parameters led to vastly different error values (Fig. 7c above 2.5 mm). This strong variation can only be found if the step size of the parameter is very small—aaround 0.01 mm. Especially, asymmetrical structures (Fig. 7d) and small sulcal gaps (Fig. 7e) vastly increase the RMS error of the Laplacian approach.

For the Laplacian approach, we were able to produce good results such as those published in the literature only for cases with relatively large CSF regions and low asymmetry, whereas PBT produced more exact and stable results over the full range of test parameters.

Brain phantoms

For the brain phantoms, if the two approaches are compared, the PBT method has much lower RMS error for the thickness measurements and applicable, to FreeSurfer. The first test consisted of the set of spherical phantoms, which were used to test the approaches over a wide set of parameters under simple but precise conditions. The second test, consisting of the brain phantoms, was used to explore the performance of the approaches under the more realistic condition of a highly convoluted surface with equal thickness. For the third test, we used the Collins phantom with different noise levels, both to add more realism and to directly compare the results to the FreeSurfer software package. Finally, we used real MR data of one subject for a test–retest of all three methods.

Spherical phantoms

Over all test parameters, PBT shows better results than the Laplacian approach for both thickness estimation and surface generation (Fig. 7a). As expected, both methods have higher RMS error for thickness estimation than for surface generation, both produce better results with PVE, and both perform better for the simpler gyral case compared to the sulcal case. The voxel-based results of the Laplacian approach are much worse than after projection to the surface, whereas PBT produced equally accurate results due to the smoothness parameter of the projection. Compared to gyral regions, sulcal regions show higher RMS error, which is strongly related to the width of the sulcal gap and its relative position.

Predicted by the sampling theorem, both show a strong increase of RMS error below sampling resolution for thickness measurements, but not for surface generation (Figs. 7b and c).

Furthermore, the Laplacian approach had larger fluctuations of error across the test cases. Relatively small variations of the test parameters led to vastly different error values (Fig. 7c above 2.5 mm). This strong variation can only be found if the step size of the parameter is very small—aaround 0.01 mm. Especially, asymmetrical structures (Fig. 7d) and small sulcal gaps (Fig. 7e) vastly increase the RMS error of the Laplacian approach.

For the Laplacian approach, we were able to produce good results such as those published in the literature only for cases with relatively large CSF regions and low asymmetry, whereas PBT produced more exact and stable results over the full range of test parameters.
similar RMS error for the surface position compared to the Laplacian method (Fig. 8). The errors occur mostly in sulcal regions where the sulcus reconstruction step cut strongly into the fundi of the sulci such that a complete correction was not possible (Fig. 8a). However, using a weaker sulcus reconstruction step or stronger corrections led to thickness overestimation, more defects, and greater RMS errors, thus it was impossible to circumvent this problem. Generally, the largest errors occurred for anisotropic resolutions, thickness levels below the sampling resolution, and higher noise levels. It can be assumed that these factors would apply to any cortical data set, and thus should be considered before applying any cortical reconstruction method.

Collins phantom

The advantage of using an additional Collins phantom is that the two approaches described here (PBT and Laplacian) can be compared to a commonly used approach for both reconstructing cortical surfaces and measuring thickness, e.g., FreeSurfer. To summarize the findings, the PBT approach had comparable or lower RMS error compared to both the Laplacian and FreeSurfer approaches (Fig. 7, Supplementary Fig. A1). If the noise level is increased, all thickness measures also had increasing error. A two-sample unpaired t-test showed no significant differences of the RMS position error between PBT and Laplacian ($t = -0.048$, $df = 8$, $p = 0.963$) and PBT and FreeSurfer ($t = 1.348$, $df = 8$, $p = 0.215$). A significant difference in thickness between PBT and Laplacian was found ($t = -2.95$, $df = 8$, $p = 0.019$), but not for PBT vs. FreeSurfer ($t = -0.944$, $df = 8$, $p = 0.374$). Furthermore, the PBT method provides an advantage in terms of reduced numbers of topological defects (an average of 15.1 for PBT, compared to 28.2 for Laplacian and 18.5 for FreeSurfer). PBT had significantly fewer defects compared to the Laplacian approach ($t = -8.656$, $df = 10$, $p < 0.001$), but not compared to FreeSurfer ($t = -1.481$, $df = 10$, $p = 0.182$). The defects associated with the Laplacian and PBT approaches were mostly bridges between two gyri and were removed by the topology.

![Fig. 7. Spherical phantom: PBT results in lower RMS error for all test categories, compared to the Laplacian approach (a). Below sampling resolution, both methods show a predictable increase of thickness measurement error due to the sampling theorem (c), whereas the position error stays stable (b). Most errors happen for sulcal cases with low sulcus width (d) and higher asymmetries (e).](image-url)
thickness measurement errors of PBT and the Laplacian approach to the ground truth (brain phantom with 2.5 mm, 1x1x1 mm, 0% noise)

![Brain phantom comparison](image)

Fig. 8. Brain phantom: Subfigure (a) shows the resulting surfaces for a simulated thickness of 2.5 mm, with an isotropic resolution of 1×1×1 mm³ and no noise. PBT produced overall good results (left), whereas the Laplacian approach showed strong underestimation in sulcal regions due to the sulcus reconstruction step (right), even if sulcus error correction was used (middle). The Laplacian approach (b — red) produced much higher thickness RMS errors than PBT (b — blue). Low sample resolution, anisotropic resolutions, and noise may increase the RMS error for both thickness measurements as well as CS position (c-e). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

correction. These results were highly dependent upon the quality of the initial tissue segmentation, the implications of which are discussed more fully in the Discussion section (Fig. 9).

Inline supplementary Fig. A1 can be found online at http://dx.doi.org/10.1016/j.neuroimage.2012.09.050.

Twelve scans of one subject

As a final approach for quantifying the performance of three approaches (PBT, Laplacian, FreeSurfer), we analyzed twelve separate scans of a single brain, then compared the results to an averaged scan of the same brain. Since the elapsed time between scans was less than one year, cortical thickness should be unchanged. Again, the PBT approach provided some advantages over the other methods (Fig. 10, Supplementary Fig. A2). First, the PBT approach is comparable to or better than other approaches in terms of the RMS thickness measurement errors (Fig. 10c; PBT: 0.39 ± 0.02 mm; Laplacian: 0.64 ± 0.02 mm; FreeSurfer: 0.53 ± 0.05 mm), and the RMS position error of the CS reconstructions was similar to the other two approaches (Fig. 10d; PBT: 0.50 ± 0.05 mm; Laplacian: 0.54 ± 0.05 mm; FreeSurfer: 0.60 ± 0.23 mm). There was no significant difference in the RMS position error between PBT and the Laplacian approach (t = −1.922, df = 22, p = 0.067) and PBT and FreeSurfer (t = −1.409, df = 22, p = 0.172), whereas the difference of the RMS thickness error was significant (t = −8.177, df = 22, p < 0.001). A major difference between the PBT and Laplacian approaches compared to FreeSurfer is a general underestimation of thickness in the motor cortex (Fig. 10b). Finally, the PBT approach produced far fewer topological defects per hemisphere compared to Laplacian (t = −6.036, df = 24, p < 0.001) and FreeSurfer (t = −4.030, df = 24, p < 0.001) (Fig. 10a; PBT: 21.5; Laplacian: 34.6; FreeSurfer: 54.6).

Inline supplementary Fig. A2 can be found online at http://dx.doi.org/10.1016/j.neuroimage.2012.09.050.

Discussion

For nearly all test cases, PBT had much lower thickness and position errors than the Laplacian approach, because PBT uses an inherent model that detects sulci, whereas the Laplacian method requires an explicit sulcus reconstruction step that changes the tissue class of sulcal voxels and may lead to the introduction of additional errors, even if these tissue class changes are compensated for within the algorithm. The different tests of the spherical phantom clearly show that the strong errors of the Laplacian approach only happen in asymmetric sulcal regions, although both methods are based on the same Eikonal distance measure that accounts for the sulcal gap. Because the real cortex also contains asymmetrical structures, it is important that the thickness measure is able to accurately evaluate these asymmetries (Das et al., 2009; Fischl and Dale, 2000; Kim et al., 2005). In addition, the brain phantoms indicate errors on the fundi of the sulci for the Laplacian method, whereas the continuous model of PBT allows a stable estimation over the whole cortex.

The correct reconstruction of blurred sulci is still a challenging process, since the result depends strongly on the used method and its parameters (Acosta et al., 2008, 2009; Cardoso et al.; Dale et al., 1999; Das et al., 2009; Han et al., 2004; Hutton et al., 2008; Kim et al., 2005). All calculations were done on an iMac 3.4 GHz Intel Core i7 with 8 GB RAM and Matlab 7.12. For both hemispheres with a resolution of 0.5 mm and with topology error correction, PBT needed around 20 min, whereas the Laplacian approach takes around 2 h. Although the FreeSurfer processing pipeline is structured differently than the PBT and Laplacian approaches, rendering comparison difficult, an estimate of the time to perform cortical reconstruction and thickness measurement is several hours.6

6 https://surfer.nmr.mgh.harvard.edu/fswiki/ReconAllRunTimes

Please cite this article as: Dahnke, R., et al., Cortical thickness and central surface estimation, NeuroImage (2012), http://dx.doi.org/10.1016/j.neuroimage.2012.09.050.
dependent from the segmentation process, because the segmentation segmentation. The tests with the spherical and brain phantoms were in-
stant. For instance, for the 1D case of a voxel v and its left and right neighbors v_l and v_r, where $v = 2.25$, $v_l = 2$, and $v_r = 3$, the WM boundary is exactly described between v and v_l, but if $v_l = 1$, then there are two
images were directly simulated, whereas the Collins phantom and the real dataset include a segmentation step. Evidence of the strong influence of the segmentation algorithm on results may be seen with the Collins phantom. Since the tissue boundaries are simulated, these phantoms included artificially precise tissue classification and resulted in much more similar thickness measurements for all methods than
for the real data set (especially in the motor cortex).

Furthermore, PBT allows a direct voxel-based analysis, potentially in combination with other voxel-based data (Hutton et al., 2009), and it may also be used to measure the thickness of the WM and CSF [HBM2010]. The voxel-based thickness estimation of PBT and other methods allows the easy creation of the central surface, which has better properties than the WM or pial surface. Previous approaches generally reconstruct a surface at a tissue boundary, which is either the WM surface or the pial surface. In one sense, such a reconstruction makes sense, since the intensity gradient in these regions can be used to estimate the position of the surface. However, due to the PVE, the boundaries often contain voxels with more than one tissue class and thus render it impossible to determine the precise location of the surface within that voxel. In the approach suggested here, the effect of PVE is somewhat reduced, since the central surface is reconstructed simply at the 50% distance boundary between the GM/WM and GM/CSF boundaries. This effect is responsible for the constant RMS position error below the sampling resolution, whereas thickness errors grow much stronger, because the PVE and neighbor information can only code the exact position of one boundary. For in-
stance, for the 1D case of a voxel v and its left and right neighbors v_l and v_r, where $v = 2.25$, $v_l = 2$, and $v_r = 3$, the WM boundary is exactly described between v and v_l, but if $v_l = 1$, then there are two

Please cite this article as: Dahnke, R., et al., Cortical thickness and central surface estimation, NeuroImage (2012), http://dx.doi.org/10.1016/

resulted in a large number of defects, mostly due to overestimation of
spite using the same segmentation images, the Laplacian approach
lowest number of defects, and the defects were also relatively small. De-
this respect, the PBT approach is the best choice, since it produced the
is desirable to minimize both the size and number of topological defects,
leads to a more uniform distribution of vertices across the surface,
which may be perturbed in a method that uses a deformation process
In order to reconstruct a surface at a tissue boundary, a suitable
Before performing intersubject comparisons, the brain surface
meshes must usually be free of topological defects, and there are several
approaches available to retrospectively correct topological errors either
in volume space or directly on the surface (Kriegeskorte and Goebel,
2001; Segonne et al., 2007; Shattuck and Leahy, 2001; Yotter et al.,
in press). Despite the availability of these correction methods, it
is desirable to minimize both the size and number of topological defects,
since non-idealities in the correction step can often introduce errors. In
this respect, the PBT approach is the best choice, since it produced the
lowest number of defects, and the defects were also relatively small. De-
spite using the same segmentation images, the Laplacian approach
resulted in a large number of defects, mostly due to overestimation of
thickness in sulcal regions and thus the formation of bridges. A detailed
discussion of the correctives of topology defects via spherical harmonics can be found in (Yotter et al., in press).

Necessity of a full phantom test suite

Comparing different software packages is never easy, because there
will always remain some differences in processing the data, i.e. the re-
striction of FreeSurfer to 1.0 mm resolution for all volumes whereas
PBT and the Laplacian approach can also use higher resolutions (here
0.5 mm). Especially, the different segmentation routines limited the
comparison between FreeSurfer and both other approaches. Further-
more, all methods based on different thickness definitions can also
lead to slightly different results (Leerh and Evans, 2005; MacDonald et
al., 2000).

Because visual inspection of surfaces gives only subjective, badly
reproducible, and often limited impressions of the reconstruction
quality (Kabani et al., 2001; Xu et al., 1999), we developed a complete
test suite containing several parameters that could be varied to fully
characterize both surface reconstruction and thickness measurement
approaches. Although previous approaches tested a small number of
phantom objects (Acosota et al., 2009; Das et al., 2009; Miller et al.,
in press), it is apparent from our results that it is necessary to test several
parameters to gain information about an algorithm’s performance, espe-
cially for special cases such as sulcal blurring. It could be further
argued that simple geometrical objects provide only limited infor-
mation about performance that cannot be extrapolated to cortical
surfaces, thus it is appropriate to include pseudo-cortical surfaces
with constant thickness over the whole cortex in the test suite. Unlike
the previous methods (Liu et al., 2008), our cortical ribbon has an
equal thickness and a more realistic structure. This constant thickness

Fig. 10. Real data. Diagram (a) show the mean number of defects per hemisphere for PBT (blue), Laplacian (red), and FreeSurfer (green). Shown in (b–d) are PBT (left column), Laplacian (middle column), and FreeSurfer (right column) surfaces with (b) cortical thickness calculated for the average surface, (c) mean thickness RMS error of all scans compared to the thickness of the average surface, and (d) mean distance RMS error of all scans to the average surface. Strong differences are visible in the thickness measurements for the motor cortex, which depended mostly on the segmentation algorithm (VBM8) and thus was similar for PBT and Laplacian, whereas FreeSurfer used internal routines. A supplementary figure, including medial and lateral views of both hemispheres, is available online. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Please cite this article as: Dahnke, R., et al., Cortical thickness and central surface estimation, NeuroImage (2012), http://dx.doi.org/10.1016/j.neuroimage.2012.09.050
theoretical allows a direct comparison between different thickness measurement algorithms.

Using phantoms with equal thickness has the fundamental advantage that an equal ribbon allows theoretically similar thickness measurements, independent of the definition of the thickness measure. An illustration may clarify this point. Let t be the simulated thickness of a convoluted brain-like ribbon with equal thickness. First, for nearest-neighbor-based methods (i.e. T_{near} (Macdonald et al., 2000)) for surface-based methods or nearest voxel for voxel-based methods), it is obvious that the nearest connection between both sides is given by the defined thickness t. Second, the T_{normal} (Macdonald et al., 2000) metric that measures the distance between both sides of the ribbon via the surface normal will measure the same thickness t, because of the well-defined structure of this ribbon, i.e., both boundaries have the same curvature by definition. Third, the streamline of the Laplacian approach will be equal to the surface normal, because they depend on the vector field given by the Laplace filter, which in turn depends on the curvature of both boundaries that are equal by definition. Fourth, the T_{link} (Macdonald et al., 2000) metric is defined for surfaces with equal numbers of vertices. Here, one surface is the result of a deformation of the other surface. The deformation is mostly based upon a field given by the intensity and/or by the surface normal or another Laplace vector field (Kim et al., 2005). Because the intensity is equal within the ribbon, only the surface normal or the vector field can be used for the deformation. As a result, the deformation is similar to the streamlines of the Laplacian approach that are similar to the surface normal.

The PVE approximation of the phantom generation based on distance maps leads to errors that depend on the resolution, the intensity (given by the distance), and the angles of the voxel to the coordinate system. The highest possible error for a resolution of $1 \times 1 \times 1$ mm3 happens for a diagonal voxel within the middle slice, and is, with a volume error below 0.05 mm3, comparable to other approximation methods (Acosta et al., 2009) in which the object is rendered first to 0.1 \times 0.1 mm3 and then down-sampled back to $1 \times 1 \times 1$ mm3. The advantage of using distance maps is the much lower memory demand and faster computation.

In the approach used here, segmentation images were directly simulated to avoid influences from the segmentation algorithm. However, it is possible to simulate a T1 image based on the tissue maps (Aubert-Broche et al., 2006), which would be useful for testing other methodological approaches using this test suite.

References

