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60 Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high perfor-
61 mance in the literature, but are difficult to compare as different data sets and methodology were used for evalu-

62ation. In addition, it is unclear how the algorithmswould perform on previously unseen data, and thus, how they
63wouldperform in clinical practicewhen there is no real opportunity to adapt the algorithm to the data at hand. To
64address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that
65aimed to objectively compare algorithms based on a clinically representativemulti-center data set. Using clinical
66practice as the starting point, the goalwas to reproduce the clinical diagnosis. Therefore,we evaluated algorithms
67formulti-class classification of three diagnostic groups: patientswith probable Alzheimer's disease, patientswith
68mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference
69standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen
70test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams
71participated with a total of 29 algorithms. The algorithms were trained on a small training set (n = 30) and op-
72tionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging
73Biomarkers and Lifestyleflagship study of aging). The best performing algorithmyielded an accuracy of 63.0% and
74an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performanceswere
75achieved using feature extraction based on voxel-basedmorphometry or a combination of features that included
76volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based
77framework: http://caddementia.grand-challenge.org.
78© 2015 Published by Elsevier Inc.
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83 Introduction

84 In 2010, the number of people over 60 years of age living with de-
85 mentia was estimated at 35.6 million worldwide. This number is ex-
86 pected to almost double every twenty years (Prince et al., 2013).
87 Accordingly, the cost of care for patients with Alzheimer's disease
88 (AD) and other dementias is expected to increase dramatically, making
89 AD one of the costliest chronic diseases to society (Alzheimer's
90 Association, 2014). Early and accurate diagnosis has great potential to
91 reduce the costs related to care and living arrangements as it gives
92 patients access to supportive therapies that can help them
93 maintain their independence for longer and delay institutionalization
94 (Paquerault, 2012; Prince et al., 2011). In addition, early diagnosis sup-
95 ports new research into understanding the disease process and devel-
96 oping new treatments (Paquerault, 2012; Prince et al., 2011).
97 While early and accurate diagnosis of dementia is challenging, it can
98 be aided by assessment of quantitative biomarkers. The five most com-
99 monly investigated biomarkerswere recently included in the reviseddi-
100 agnostic criteria for AD (McKhann et al., 2011; Jack et al., 2011) and in
101 the revised diagnostic criteria for mild cognitive impairment (MCI)
102 due to AD (Albert et al., 2011). These five biomarkers can be divided
103 into two categories: 1) measures of brain amyloid, which include cere-
104 brospinal fluid (CSF) measures of Aβ42 and amyloid positron emission
105 tomography (PET) imaging, and 2)measures of neuronal injury and de-
106 generation, which include CSF tau measurement, fluoro deoxyglucose
107 (FDG) PET and structural MRI (Jack et al., 2012). Of these biomarkers,
108 structural MRI is very important as it is widely available and non-
109 invasive. Also, it is a good indicator of progression to AD in an individual
110 subject, because it becomes abnormal in close temporal proximity to the
111 onset of the cognitive impairment (Jack et al., 2010, 2013).
112 Structural MRI data can be used to train computer-aided diagnosis
113 methods. Thesemethodsmake use of machine-learning and other mul-
114 tivariate data-analysis techniques that train a model (classifier) to cate-
115 gorize groups (e.g., patients and controls). Computer-aided diagnosis
116 techniques use features derived from neuroimaging or related data,
117 and may therefore benefit from the large amounts of neuroimaging
118 data that have become available over the last years. The techniques
119 may improve diagnosis as they can potentiallymake use of group differ-
120 ences that are not noted during qualitative visual inspection of brain im-
121 aging data, potentially leading towards an earlier and more objective
122 diagnosis than when using clinical criteria (Klöppel et al., 2012). In ad-
123 dition, computer-aided diagnosis algorithms can be used to 1) improve
124 diagnosis in hospitals with limited neurological and neuroradiological
125 expertise, 2) increase the speed of diagnosis, and 3) aid the recruitment

126of specific, homogeneous patient populations for clinical trials in phar-
127macological research (Klöppel et al., 2012).
128Structural-MRI-based computer-aided diagnosis methods for de-
129mentia, mainly for AD and MCI, have previously shown promising re-
130sults in the literature. A few years ago, Cuingnet et al. (2011)
131compared the performance of various feature extraction methods
132(e.g., voxel-based features, cortical thickness, hippocampal shape and
133volume) for dementia classification using a support vector machine
134(SVM) based on structural MRI. Using data from 509 subjects from the
135Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, three clas-
136sification experiments were performed: 1) AD versus healthy controls
137(CN), 2) patients with MCI versus CN, and 3) MCI who had converted
138to AD within 18 months (MCI converters, MCIc) versus MCI who had
139not converted to AD within 18 months (MCI non-converters, MCInc).
140For the AD/CN classification, the best results were obtained with
141whole-brain methods (voxel-based and cortical thickness) achieving
14281% sensitivity and 95% specificity for the best method. The perfor-
143mances of the MCI/CN classifications were much lower than those of
144AD/CN, and the MCIc/MCInc classifications yielded no performances
145better than chance. A recent review paper by Falahati et al. (2014)
146discussed the literature on AD classification andMCI prediction. The re-
147search field of computer-aided diagnosis of dementia based on structur-
148al MRI is rather extensive, as evidenced by this paper reviewing 50
149papers with at least 50 subjects per diagnostic group. The reviewed pa-
150pers mainly trained a classification model on the AD/CN groups and
151subsequently tested this model on both AD/CN and MCIc/MCInc classi-
152fications. The paper concluded that classification methods are difficult
153to compare, because the outcome is influenced by many factors, such
154as feature extraction, feature selection, robustness of the validation ap-
155proach, image quality, number of training subjects, demographics, and
156clinical diagnosis criteria. In general, the accuracy obtained for AD/CN
157classification was 80–90%, and the accuracy for prediction of MCI con-
158version is somewhat lower. To promote comparison of algorithms,
159Sabuncu and Konukoglu (2014) published results based on six
160large publicly available data sets for AD and other diseases
161(e.g., schizophrenia, autism). A comparison was performed using four
162feature extraction strategies, including volumetric and cortical thick-
163ness features computed with FreeSurfer (Fischl, 2012), and three
164types of machine learning techniques (SVM, neighborhood approxima-
165tion forest (Konukoglu et al., 2013), and relevance voxel machine
166(Sabuncu and Van Leemput, 2012)). Using the ADNI database, the accu-
167racies ranged from80–87% for AD/CN classification and 58–66% forMCI/
168CN classification. The authors made all processed data and computa-
169tional tools available to promote extension of their benchmark results.

2 E.E. Bron et al. / NeuroImage xxx (2015) xxx–xxx

Please cite this article as: Bron, E.E., et al., Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural
MRI: The CADDementia challenge, NeuroImage (2015), http://dx.doi.org/10.1016/j.neuroimage.2015.01.048



U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

170 Taken together, these publications show very promising results of
171 algorithms for computer-aided diagnosis of AD and MCI. However,
172 they are difficult to compare as different data sets and methodology
173 were used for evaluation. In addition, it is unclear how the algorithms
174 would perform on previously unseen data, and thus, how they would
175 perform in clinical practicewhen there is noopportunity to adapt the al-
176 gorithm to the data at hand. Adaptation of an algorithm would be nec-
177 essary if the algorithm had been trained or optimized on data that are
178 not representative for the data used in a clinical setting. This seriously
179 hampers clinical implementation of algorithms for computer-aided di-
180 agnosis. In medical image analysis research, issues related to compara-
181 bility and clinical applicability have been addressed in grand
182 challenges2. Such grand challenges have the goal of comparing algo-
183 rithms for a specific task on the same clinically representative data
184 using the same evaluation protocol. In such challenges, the organizers
185 supply reference data and evaluation measures on which researchers
186 can evaluate their algorithms. For this work, we initiated a grand chal-
187 lenge on computer-aided diagnosis of dementia (CADDementia). The
188 CADDementia challenge aims to objectively compare algorithms for
189 classification of AD and MCI based on a clinically representative multi-
190 center data set. We recently organized a workshop at the 17th Interna-
191 tional Conference onMedical Image Computing and Computer-Assisted
192 Interventions (MICCAI). At this workshop, the methods and results of
193 the algorithms were presented by the 15 teams that originally partici-
194 pated in the challenge.
195 In the CADDementia challenge,we evaluated algorithms thatmade a
196 multi-class classification of three diagnostic groups: patients with AD,
197 patients with MCI and CN. The algorithms covered the complete
198 image-processing and classification pipeline starting from structural
199 MRI images. The current clinical diagnosis criteria for AD and MCI
200 (McKhann et al., 2011; Petersen, 2004)were used as the reference stan-
201 dard. Although MCI is known to be heterogeneous, as some of the pa-
202 tients will convert to AD and others will not, it is considered to be one
203 diagnostic entity according to these clinical diagnosis criteria. Hence,
204 in this challenge we did not address prediction of MCI progression,
205 but focused on diagnosis as a crucial first step. Regarding diagnostic
206 classification, binary AD/CN classification overestimates true clinical
207 performance as the most difficult to diagnose patients are left out.
208 Therefore we chose to stay close to the clinical problem and address
209 the three-class classification problem.
210 An evaluation framework was developed consisting of evaluation
211 measures and a reference data set. All methodological choices for the
212 evaluation framework are based on considerations related to our aim
213 to take a step towards clinical implementation of algorithms for
214 computer-aided diagnosis of dementia. This can be summarized in
215 three key points: comparability, generalizability, and clinical applicabil-
216 ity. First, by evaluating all algorithms using the same data set and eval-
217 uation methods, the results of the algorithms were better comparable.
218 Second, by providing a previously unseen multi-center data set with
219 blinded ground truth diagnoses, overtraining was avoided and general-
220 izability of the algorithms is promoted. Third, according to the current
221 clinical standards, a multi-class diagnosis of AD, MCI and CNwas evalu-
222 ated. The data for the evaluation framework consisted of clinically-
223 representative T1-weighted MRI scans acquired at three centers. For
224 testing the algorithms,we used scans of 354 subjectswith the diagnoses
225 blinded to the participants. Because the aim of this challenge was to
226 evaluate the performance in a clinical situation, when not much data
227 are available, we decided to make only a small training set available.
228 This training set consisted of 30 scans equally representing the three
229 data-supplying centers and the diagnostic groups. The diagnostic labels
230 for the training set weremade available. For both training and test data,
231 age and sex were provided. In addition to the provided training data,
232 teams were encouraged to use training data from other sources. For

233this purpose, most algorithms used data from the Alzheimer's Disease
234Neuroimaging Initiative (ADNI)3 or from the Australian Imaging Bio-
235marker and Lifestyle flagship study of aging (AIBL)4.
236In this article, we present the CADDementia challenge for objective
237comparison of computer-aided diagnosis algorithms for AD and MCI
238based on structural MRI. The article describes the standardized evalua-
239tion framework consisting of evaluation measures and a multi-center
240structural MRI data set with clinical diagnoses as reference standard.
241In addition, this paper presents the results of 29 algorithms for the clas-
242sification of dementia developed by 15 international research teams
243that participated in the challenge.

244Evaluation framework

245In this section, we describe our evaluation framework including the
246data set, the reference standard, the evaluation measures and the algo-
247rithm ranking methods.

248Web-based evaluation framework

249The evaluation framework as proposed in this work is made publicly
250available through a web-based interface5. From this protected web site,
251the data and the evaluation software are available for download. The
252data available for download are, for the training set: a total of 30 struc-
253tural MRI scans from the probable AD, MCI and CN groups including di-
254agnostic label, age, sex and scanner information; and for the test set:
255354 structural MRI scans from the probable AD, MCI and CN groups in-
256cluding age, sex and scanner information. The data set and the evalua-
257tion measures are detailed in the following sections. Everyone who
258wishes to validate their algorithm for classification of AD, MCI and CN
259can use the data set for validation. To be allowed to download the
260data, participants are required to sign a data usage agreement and to
261send a brief description of their proposed algorithm. The predictions
262and a short article describing the algorithm are submitted via the web
263site4. The algorithms are validated with the software described in the
264following sections. The web site remains open for new submissions to
265be included in the ranking.

266Data

267A multi-center data set was composed consisting of imaging data of
268384 subjects from three medical centers: VU University Medical Center
269(VUMC), Amsterdam, TheNetherlands; ErasmusMC (EMC), Rotterdam,
270The Netherlands; University of Porto/Hospital de São João (UP), Porto,
271Portugal. The data set contained structural T1-weighted MRI (T1w)
272scans of patientswith the diagnosis of probable AD, patientswith the di-
273agnosis ofMCI, and CNwithout a dementia syndrome. In addition to the
274MR scans, the data set included demographic information (age, sex) and
275information on which institute the data came from. Within the three
276centers, the data sets of the three classes had a similar age and sex
277distribution.
278The data characteristics are listed in Table 1 and the sizes of the com-
279plete data set, training set and test set are listed in Table 2. Most of the
280data were used for evaluation of performance: the test set. Only after
281the workshop, we released the class sizes of the test set, marked with
282an * in Table 2. Therefore only the prior for each class (~1/3) was
283known to the authors of the algorithms in this paper. A small training
284data set with diagnostic labels was made available, which consisted of
28530 randomly chosen scans distributed over the diagnostic groups. Suit-
286able data from other sources could be used for training (see Training
287data from other sources Q3section).

2 http://www.grand-challenge.org.

3 http://adni.loni.usc.edu.
4 http://aibl.csiro.au.
5 http://caddementia.grand-challenge.org.
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288 Reference standard

289 The clinical diagnosiswasused as the reference standard in this eval-
290 uation framework. The data were acquired either as part of clinical rou-
291 tine or as part of a research study at the three centers. All patients
292 underwent neurological and neuropsychological examination as part
293 of their routine diagnostic work up. The clinical diagnosis was
294 established by consensus of a multidisciplinary team. Patients with AD
295 met the clinical criteria for probable AD (McKhann et al., 1984, 2011).
296 MCI patients fulfilled the criteria specified by Petersen (2004): i.e.,
297 memory complaints, cognitive impairment in one or multiple domains
298 confirmed by neuropsychological testing, not demented, intact global
299 cognitive function, clinical dementia rating score=0.5. No hard thresh-
300 old values were used, but all mentioned criteria were considered. Sub-
301 jects with psychiatric disorder or other underlying neurological
302 diseases were excluded. Center-specific procedures are specified in
303 the following sections.

304 VU University Medical Center (VUMC), Amsterdam, The Netherlands
305 Patients with AD, patients with MCI and controls with subjective
306 complaints were included from the memory-clinic based Amsterdam
307 Dementia Cohort (van der Flier et al., 2014). The protocol for selection
308 of patients and controls was the same as used by Binnewijzend et al.
309 (2013). Controls were selected based on subjective complaints and
310 had at least 1 year of follow-up with stable diagnosis. For the controls,

311the findings from all investigations were normal; they did not meet
312the criteria for MCI. The patients' T1w-scans showed no stroke or
313other abnormalities. All patients gave permission for the use of the
314data for research.

315Erasmus MC (EMC), Rotterdam, The Netherlands
316From the Erasmus MC, the data were acquired either as part of clin-
317ical routine or as part of a research study. All patients were included
318from the outpatient memory clinic. Diagnostic criteria for AD and MCI
319(Papma et al., 2014) were as mentioned above. Healthy control subjects
320were volunteers recruited in research studies and did not have any
321memory complaints. All subjects signed informed consent and the
322study was approved by the local medical ethical committee.

323University of Porto/Hospital de São João (UP), Porto, Portugal
324Themajority of the included patients were included from the outpa-
325tient dementia clinic of Hospital de São João (Porto, Portugal). Two pa-
326tients with AD were referred from external institutions for a second
327opinion. In addition, healthy control subjects were volunteers recruited
328in research studies. All subjects provided consent to be included in this
329study.

330Data preprocessing

331The T1wMRI data was anonymized and facial featuresweremasked
332(Leung et al., 2014). All anonymized scans were visually inspected to
333check if no brain tissuewas accidentally removed by the facial masking.
334Skull strippingwas performed by the participants themselves, if needed
335for their algorithm. Next to the original anonymized T1w scans, we pro-
336vided these scans after non-uniformity correction with N4ITK (Tustison
337et al., 2010) using the following settings: shrink factor = 4, number of
338iterations = 150, convergence threshold = 0.00001, and initial b-
339spline mesh resolution = 50 mm. Images were stored in NIfTI-1 file
340format.6

t1:1 Table 1
t1:2 Data characteristics. ASSET: array spatial sensitivity encoding technique, FSPGR: fast spoiled gradient-recalled echo, IR: inversion recovery, MPRAGE:magnetization prepared rapid acqui-
t1:3 sition gradient echo, TE: echo time, TI: inversion time, TR: repetition time.

t1:4 VUMC EMC UP

t1:5 Scanner 3T, GE Healthcare
Signa HDxt

3T, GE Healthcare
Protocol 1: Discovery MR750
Protocol 2: Discovery MR750
Protocol 3: HD platform

3T, Siemens
Trio A Tim

t1:6 Sequence 3D IR FSPGR 3D IR FSPGR 3D MPRAGE
t1:7 Scan parameters (TI/TR/TE) 450 ms/7.8 ms/3.0 ms Protocol 1: 450 ms/7.9 ms/3.1 ms

Protocol 2: 450 ms/6.1 ms/2.1 ms
Protocol 3: 300 ms/10.4 ms/2.1 ms

900 ms/2300 ms/3.0 ms

t1:8 Parallel imaging Yes (ASSET factor = 2) PROTOCOL 1: YES (ASSET FACTOR = 2)
PROTOCOL 2: PARALLEL IMAGING: NO
PROTOCOL 3: PARALLEL IMAGING: NO

No

t1:9 Resolution 0.9 × 0.9 × 1 mm (sagittal) Protocol 1: 0.9 × 0.9 × 1.0 mm (sagittal)
Protocol 2: 0.9 × 0.9 × 0.8 mm (axial)
Protocol 3: 0.5 × 0.5 × 0.8 mm (axial)

1 × 1 × 1.2 mm (sagittal)

t1:10 Number of scans 180 174 30
t1:11
t1:12 Age mean (Std)
t1:13 Overall 62.2 (5.9) years 68.6 (7.8) years 67.8 (9.1) years
t1:14 CN 62.1 (6.0) years 65.5 (7.3) years 64.1 (8.8) years
t1:15 MCI 62.5 (5.5) years 73.1 (5.5) years 70.0 (8.5) years
t1:16 AD 62.0 (6.0) years 67.2 (8.4) years 64.6 (7.8) years
t1:17
t1:18 Percentage of males
t1:19 Overall 59% 63% 50%
t1:20 CN 62% 61% 40%
t1:21 MCI 68% 69% 60%
t1:22 AD 47% 57% 50%

t2:1Q14 Table 2
t2:2 Sizes of the complete data set, training set and test set, distributed over the three data-sup-
t2:3 plying centers and the three classes. The numbers in the columnsmarked by a * were un-
t2:4 known to the authors of the algorithms discussed in this paper.

t2:5 Complete data set Training data Test data

t2:6 nAD* nMCI* nCN* n nAD nMCI nCN n nAD* nMCI* nCN* n

t2:7 VUMC 60 60 60 180 5 4 5 14 55 56 55 166
t2:8 EMC 42 61 71 174 3 4 6 13 39 57 65 161
t2:9 UP 10 10 10 30 1 1 1 3 9 9 9 27
t2:10 Total 112 131 141 384 9 9 12 30 103 122 129 354 6 http://nifti.nimh.nih.gov.
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341 Evaluation measures

342 The performance of the algorithms was quantified by the classifica-
343 tion accuracy, area under the receiver-operating-characteristic (ROC)
344 curve (AUC) and the true positive fraction for the three classes. The per-
345 formance was evaluated on all 354 test subjects (ALL) and in addition
346 per data-providing center (VUMC, EMC, UP).

347 Accuracy for multi-class classification
348 Classification accuracy is in case of a binary design defined as the
349 number of correctly classified samples divided by the total number of
350 samples. For extending the accuracy measure to three-class classifica-
351 tion, there are two main options (Hand and Till, 2001). The difference
352 between these is whether or not the difference between the two other
353 classes is taken into account when the performance for one class is
354 assessed.
355 To determine a simplemeasure of accuracy, all diagonal elements of
356 the confusion matrix (Table 3), the true positives (tp) and true nega-
357 tives (tn), are divided by the total number of samples (n):

accuracy ¼ tpþ tn
n

¼
n0;0 þ n1;1 þ n2;2

n0 þ n1 þ n2
: ð1Þ

359359

The alternative, the average accuracy,

accuracyaverage ¼
1
L

XL−1

i¼0

tpi þ tni

n
¼ 1

L

XL−1

i¼0

ni;i þ ΣL−1
j¼0; j≠iΣ

L−1
k¼0;k≠in j;k

n
; ð2Þ

361361Q4 asseses the accuracy separately for each class without distinguishing
between the two other classes. For calculation of the accuracy for i=

362 0, the true positive samples (tpi) are n0,0. The true negative samples
363 in this case (tni) are n1,1, n1,2, n2,1 and n2,2. The separate per-class ac-
364 curacies are averaged to yield the final accuracy. L denotes the num-
365 ber of classes.
366 Eq. (2) ismainly applicable when the class sizes are very different. In
367 this evaluation framework, we use the accuracy in Eq. (1) as it provides
368 a better measure for the overall classification accuracy (Hand and Till,
369 2001).

370 AUC for multi-class classification
371 The performance of a binary classifier can be visualized as an ROC
372 curve by applying a range of thresholds on the probabilistic output of
373 the classifier and calculating the sensitivity and specificity. The AUC
374 is a performance measure which is equivalent to the probability
375 that a randomly chosen positive sample will have a higher probabil-
376 ity of being positively classified than a randomly chosen negative
377 sample (Fawcett, 2006). The advantage of ROC analysis – and accord-
378 ingly the AUC measure – is that the performance of a classifier is
379 measured independently of the chosen threshold. When more than
380 two dimensions are used the ROC-curve becomes more complex.
381 With L classes, the confusion matrix consists of L2 elements: L diago-
382 nal elements denoting the correct classifications, and L2 − L off-
383 diagonal elements denoting the incorrect classifications. For ROC

384analysis, the trade-off between these off-diagonal elements is varied.
385For three-class classification, there are 32 − 3 = 6 off-diagonal ele-
386ments, resulting in a 6-dimensional ROC-curve. Therefore, for sim-
387plicity, multi-class ROC analysis is often generalized to multiple
388per-class or pairwise ROC curves (Fawcett, 2006).
389Similarly to accuracy in the previous section, the multi-class AUC
390measure can be defined in two ways. The difference between the two
391definitions is whether or not the third class is taken into account
392when the difference between a pair of classes is assessed.
393First, Provost and Domingos (2001) calculate the multi-class AUC
394by generating an ROC curve for every class and measuring the AUCs.
395These per-class AUCs are averaged using the class priors p(ci) as
396weights:

AUC1 ¼
XL−1

i¼0

AUC cið Þ % p cið Þ: ð3Þ

398398

This method has the advantage that the separate ROC curve can be
399easily generated and visualized. The method calculates an AUC for
400every class separately, which is sensitive for the class distributions.
401Even though the class priors are used in averaging, the total AUC still de-
402pends on the class sizes.
403Second, Hand and Till (2001) proposed a differentmethod formulti-
404class AUCwhich is based on calculating an AUC for every pair of classes,
405without using information from the third class. The method is based on
406the principle that the AUC is equivalent to the probability that a ran-
407domly chosen member of class ci will have a larger estimated probabil-
408ity of belonging to class Ci than a randomly chosen member of class cj.
409Using this principle, the AUC can also be calculated directly from the
410ranks of test samples instead of first calculating the ROC curves. To
411achieve this, the class ci and cj test samples are ranked in increasing
412order of the output probability for class Ci. Let Si be the sum of the
413ranks of the class ci test samples. The AUC for a class ci given another
414class, Â(ci|cj), is then given by

Â cijc j
! "

¼ Si−ni ni þ 1ð Þ=2
ninj

; ð4Þ

416416see Hand and Till (2001) for the complete derivation.
For situations with three or more classes, Â(ci|cj) ≠ Â(cj|ci). There-

417fore, the average of both is used:

Â ci; c j
! "

¼
Â cijc j
! "

þ Â c jjci
! "

2
: ð5Þ

419419

The overall AUC is obtained by averaging this over all pairs of
420classes:

AUC2 ¼ 2
L L−1ð Þ

XL−1

i¼0

Xi

j¼0

Â ci; c j
! "

; ð6Þ

422422in which the number of pairs of classes is L L−1ð Þ
2 .

In contrast to the accuracy, AUC measurement does not require a
423threshold on the classifier's output probabilities and therefore the
424AUC generally does not rely on the class priors (Hand and Till,
4252001). However, the first multi-class approach is dependent on the
426class priors as these are used for averaging the per-class AUCs.

t3:1 Table 3
t3:2 Confusion matrix for a three-class classification problem.

t3:3 True class

t3:4 c0 c1 c2

t3:5 Hypothesized class C0 n0,0 n0,1 n0,2
t3:6 C1 n1,0 n1,1 n1,2
t3:7 C2 n2,0 n2,1 n2,2
t3:8

t3:9 Column totals: n0 n1 n2
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427 Therefore for this challenge, the second approach for AUC was
428 adopted (Fawcett, 2006).

429 True positive fraction
430 For binary classifications in computer-aided diagnosis, often the sen-
431 sitivity and the specificity are reported in addition to the accuracy. For
432 this multi-class application, the true positive fractions (TPF) for the
433 three classes provide the same information:

TPFi ¼
ni;i

ni
; i ∈ 0;1;2: ð7Þ

435435

The TPF for the diseased class (TPFAD; TPFMCI) can be interpreted as
436 the two-class sensitivity, and the TPF for the control group equals the
437 two-class specificity.

438 Submission guidelines

439 In this challenge, the participating teams were allowed to submit up
440 to five algorithms. Submitting the diagnostic label for each sample of the
441 test set was obligatory. Additionally, the output probabilities for each
442 label were requested but this was optional to not rule out approaches
443 that do not produce probabilistic outcomes. Every team had to write
444 one full workshop paper describing their algorithms in the style of Lec-
445 ture Notes in Computer Science.

446 Final results and ranking

447 For every algorithm, a confusion matrix was made based on the test
448 data. Accuracy (Eq. (1)) and the TPFi (Eq. (7)) for the three classes were
449 calculated from the diagnostic labels. For every class, an ROC curve and
450 per-class AUCswere calculated from the output probabilities reduced to
451 a binary solution, e.g., AD versus non-AD, showing the ability of the clas-
452 sifier to separate that class from the other two classes. An overall AUC
453 was calculated using Eqs. (4)–(6). Confidence intervals on the accuracy,
454 AUC and TPFwere determinedwith bootstrapping on the test set (1000
455 resamples). To assess whether the difference in performance between
456 two algorithms was significant, the McNemar test (Dietterich, 1996)
457 was used. Evaluation measures were implemented in Python scripting
458 language (version 2.7.6) using the libraries Scikit-learn7 (version 14.1)
459 and Scipy8 (version 14.0).
460 If an algorithm failed to produce an output for certain subjects, these
461 subjectswere consideredmisclassified as a fourth class. This fourth class
462 was considered in the calculation of all performance measures. For cal-
463 culation of the per-class ROC curves, sensitivity and specificity were de-
464 termined on the subjects that were classified by the algorithm and
465 subsequently scaled to the total data set to take missing samples into
466 account.
467 The participating algorithmswere ranked based on accuracy of diag-
468 nosing the cases in the test set. Algorithms for which output probabili-
469 ties were available were also ranked based on the AUC of diagnosing
470 the cases in the test set. The algorithm with the best accuracy
471 (rank = 1) on the test set, was considered the winning algorithm. In
472 case two or more algorithms had equal accuracies, the average rank
473 was assigned to these algorithms.

474 MICCAI 2014 workshop

475 The evaluation framework was launched in March 2014 and the
476 deadline for the first submissions was in June 2014. The evaluation
477 framework and the results of the first participating algorithms were
478 presented at the Challenge on Computer-Aided Diagnosis of Dementia
479 Based on Structural MRI Data workshop that was organized on

480September 18th 2014 in conjunction with the 17th International Con-
481ference on Medical Image Computing and Computer Assisted Interven-
482tion (MICCAI) conference in Boston (USA).
483We invited around 100 groups from academia and industry by email
484to participate in the challenge. The challenges were advertised by the
485MICCAI organizers as well. Eighty-one teams made an account on the
486web site, of which 47 sent a data usage agreement and a brief descrip-
487tion of the proposed algorithm, which was required for downloading
488the data. Finally, 16 teams submitted results, of which 15were accepted
489for participation in the workshop. One team was excluded from
490participation because their workshop submission did not meet the
491requirements and because they only submitted results for AD/CN classi-
492fication. The 15 participating teams submitted a total of 29 algorithms.
493These algorithms are described in the Algorithms Q5section. More details
494can be found in the short articles that all authors submitted for the
495workshop (Bron et al., 2014).

496Training data from other sources

497In addition to the provided training data set of 30 scans, other
498sources of training data could be used by the participants. All algorithms
499except for two were trained on data from the Alzheimer's Disease Neu-
500roimaging Initiative (ADNI) database9. The ADNI was launched in 2003
501by the National Institute on Aging (NIA), the National Institute of Bio-
502medical Imaging and Bioengineering (NIBIB), the Food and Drug Ad-
503ministration (FDA), private pharmaceutical companies and non-profit
504organizations, as a $60 million, 5-year public-private partnership. The
505primary goal of ADNI has been to test whether serial magnetic reso-
506nance imaging (MRI), positron emission tomography (PET), other bio-
507logical markers, and clinical and neuropsychological assessments can
508be combined to measure the progression of mild cognitive impairment
509(MCI) and early Alzheimer's disease (AD). Determination of sensitive
510and specific markers of very early AD progression is intended to aid re-
511searchers and clinicians to develop new treatments and monitor their
512effectiveness, as well as lessen the time and cost of clinical trials. For
513up-to-date information, see www.adni-info.org. Acquisition of these
514data had been performed according to the ADNI acquisition protocol
515(Jack et al., 2008).
516Two teams additionally trained on data from the Australian Imaging
517Biomarkers and Lifestyle (AIBL) flagship study of aging10 funded by the
518Commonwealth Scientific and Industrial Research Organisation
519(CSIRO). These data were collected by the AIBL study group. AIBL
520study methodology has been reported previously (Ellis et al., 2009).

521Algorithms

522In this section, the 29 algorithms submitted by 15 teams are summa-
523rized. In Table 4, an overview of the algorithms is presented including a
524listing of the size of the used training set and the performance on the
525provided 30 training scans.

526Abdulkadir et al.
527Algorithm: Abdulkadir (Abdulkadir et al., 2014).
528Features: Voxel-based morphometry (VBM) of gray matter (GM).
529Classifier: Radial-basis kernel SVM.
530Training data: 1289 ADNI subjects and 140 AIBL subjects. The 30
531training subjects provided by the challenge were used for parameter
532selection.
533Feature selection: SVM significancemaps (Gaonkar andDavatzikos,
5342013).
535Confounder correction: Yes, for age, sex and intracranial volume
536(ICV) using kernel regression.

7 http://scikit-learn.org.
8 http://www.scipy.org.

9 http://adni.loni.usc.edu.
10 http://aibl.csiro.au.
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537 Automatic:Yes. Registration requiredmanual intervention for some
538 subjects.
539 Computation time: 1 h per subject.

540 Amoroso et al.
541 Algorithm: Amoroso (Amoroso et al., 2014).
542 Features: Volume features (FreeSurfer) and intensity features of the
543 peri-hippocampal region (mean, standard deviation, kurtosis, and
544 skewness).
545 Classifier: Back propagation neural network (1hidden layer, 10 neu-
546 rons). For every pairwise classification, 100 networks were trained on
547 50 randomly selected features. For final classification, the output scores
548 were averaged.
549 Training data: 258 ADNI subjects + the 30 training subjects.
550 Feature selection: Unsupervised filter based on correlation and lin-
551 ear dependencies.
552 Confounder correction: –.
553 Automatic: Yes.
554 Computation time: 13 h per subject, of which 12 h were due to
555 FreeSurfer processing time.

556 Cárdenas-Peña et al.
557 Algorithm: Cárdenas-Peña (Cárdenas-Peña et al., 2014)
558 Features: Features were based on similarities in MRI intensities be-
559 tween subjects. As a first step, similarities between slices of a subject's
560 scan were calculated along each axis resulting in an interslice kernel
561 (ISK) matrix. Second, pairwise similarities between the subjects' ISK
562 matrices were computed using theMahalanobis distance. Third, the de-
563 pendence between the resulting matrix of the previous step and the
564 class labels was optimized using a kernel centered alignment function.
565 The eigenvalues of the resulting matrix were used as features.
566 Classifier: Radial-basis kernel SVM.
567 Training data: 451 ADNI subjects.
568 Feature selection: –.
569 Confounder correction: –.

570Automatic: Yes.
571Computation time: 22.3 s per subject.

572Dolph et al.
573Algorithm: Dolph (Dolph et al., 2014).
574Features: Volume ratio of white matter (WM) and CSF for axial
575slices.
576Classifier: Radial-basis kernel SVM.
577Training data: The 30 training subjects.
578Feature selection: SVM wrapper.
579Confounder correction: –.
580Automatic: Yes, but parameters for skull stripping and tissue seg-
581mentation were set manually.
582Computation time: 30 min per subject.

583Eskildsen et al.
584Algorithm: Eskildsen (Eskildsen et al., 2014, 2015):
585Features: Volume and intensity features of the hippocampus (HC)
586and entorhinal cortex (ERC) were calculated with Scoring by Non-
587local Image Patch Estimator (SNIPE). By comparing small image patches
588to a training library, this method segmented these brain regions and
589computed a grading value per voxel reflecting the proximity between
590a patch and the classes. As features, the volumes and average grading
591values for HC and ERC were used.
592Cortical thickness was computed with Fast Accurate Cortex Extrac-
593tion (FACE). As features, themean cortical thicknesswas used in regions
594with large differences in cortical thickness between the classes.
595These features were combined:

5961. Eskildsen-FACEADNI1: Volume, intensity and cortical thickness fea-
597tures
5982. Eskildsen-ADNI1: Volume and intensity features
5993. Eskildsen-FACEADNI2: Volume, intensity and cortical thickness fea-
600tures
6014. Eskildsen-ADNI2: Volume and intensity features

t4:1 Table 4
t4:2 Overview of the participating algorithms. The training accuracy was computed on the 30 training subjects by training on the data from different sources only. As indicated below, three
t4:3 algorithms instead trained on all data using 5-fold or 10-fold cross-validation.

t4:4 2*Algorithm 2*Features 2*Classifier Size training data Training accuracy [%]

t4:5 1 Abdulkadir VBM SVM 1492 60
t4:6 2 Amoroso Volume and intensity relations Neural network 288 675-fold

t4:7 3 Cárdenas-Peña Raw intensities SVM 451 83
t4:8 4 Dolph Volumes SVM 30 8010-fold

t4:9 5 Eskildsen-ADNI1 Volume and intensity relations Regression 794 77
t4:10 6 Eskildsen-ADNI2 Volume and intensity relations Regression 304 70
t4:11 7 Eskildsen-Combined Volume, thickness and intensity relations Regression 1098 73
t4:12 8 Eskildsen-FACEADNI1 Volume, thickness and intensity relations Regression 794 70
t4:13 9 Eskildsen-FACEADNI2 Volume, thickness and intensity relations Regression 304 67
t4:14 10 Franke VBM Regression 591 90
t4:15 11 Ledig-ALL Volume, thickness and intensity relations Random forest 734 68
t4:16 12 Ledig-CORT Cortical thickness Random forest 734 58
t4:17 13 Ledig-GRAD Intensity relations Random forest 734 67
t4:18 14 Ledig-MBL Intensity relations Random forest 734 66
t4:19 15 Ledig-VOL Volumes Random forest 734 56
t4:20 16 Moradi VBM SVM 835 77
t4:21 17 Routier-adni Shapes Regression 539 50
t4:22 18 Routier-train Shapes Regression 539 73
t4:23 19 Sarica Volume and thickness SVM 210 70
t4:24 20 Sensi Intensity relations Random forest, SVM 581 73
t4:25 21 Smith Volume and raw intensities Regression 189 80
t4:26 22 Sørensen-equal Volume, thickness, shape, intensity relations LDA 679 73
t4:27 23 Sørensen-optimized Volume, thickness, shape, intensity relations LDA 679 80
t4:28 24 Tangaro Volume and thickness SVM 190 735-fold

t4:29 25 Wachinger-enetNorm Volume, thickness and shape Regression 781 73
t4:30 26 Wachinger-man Volume, thickness and shape Regression 781 67
t4:31 27 Wachinger-step1 Volume, thickness and shape Regression 781 77
t4:32 28 Wachinger-step1Norm Volume, thickness and shape Regression 781 77
t4:33 29 Wachinger-step2 Volume, thickness and shape Regression 781 80
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602 5. Eskildsen-Combined: A combination of the other four methods by av-
603 eraging the posterior probabilities

604 Classifier: Sparse logistic regression. Ensemble learning was used to
605 combine twenty-five models that were trained using different parame-
606 ters and different samplings of the data.
607 Training data:

608 1. Eskildsen-FACEADNI1: 794 ADNI1 subjects
609 2. Eskildsen-ADNI1: 794 ADNI1 subjects
610 3. Eskildsen-FACEADNI2: 304 ADNI2 subjects
611 4. Eskildsen-ADNI2: 304 ADNI2 subjects
612 5. Eskildsen-Combined: 794 ADNI1 and 304 ADNI2

613 Regression parameters were optimized on the 30 training subjects.
614 Feature selection: –.
615 Confounder correction: Yes, for age, sex and differences in class
616 priors.
617 Automatic: Yes.
618 Computation time: 55 min per subject.

619 Franke et al.
620 Algorithm: Franke (Franke and Gaser, 2014)
621 Features: VBM of GM and WM.
622 Classifier:Relevance vector regression. An age predictionmodelwas
623 trained on healthy controls. Classification of AD, MCI and CN was per-
624 formed by thresholding the age difference between the predicted age
625 and the real age.
626 Training data: 561 healthy subjects (IXI cohort11). The age differ-
627 ence threshold was optimized on the 30 training subjects.
628 Feature selection: Principal component analysis (PCA).
629 Confounder correction: Yes. Age was used in the modeling. Sepa-
630 rate models were trained for males and females.
631 Automatic: Yes, except for the optimization of the age difference
632 threshold.
633 Computation time: 10 min per subject.

634 Ledig et al.
635 Algorithm: Ledig (Ledig et al., 2014).
636 Features: Five feature sets were used:

637 1. Ledig-VOL: Volumes of regions-of-interest (ROIs) obtained with
638 multi-atlas label propagation and expectation-maximization-based
639 refinement (MALP-EM).
640 2. Ledig-CORT: Cortical thickness features (mean and standard devia-
641 tion) and surface features (surface area, relative surface area, mean
642 curvature, Gaussian curvature) for the whole cortex and cortex re-
643 gions.
644 3. Ledig-MBL: Features describing the manifold-based learning (MBL)
645 space. The manifold was trained on intensity texture descriptors for
646 1701 ADNI subjects.
647 4. Ledig-GRAD: Intensity patterns in patches. Grading features were
648 learned using data of 629 ADNI and the 30 training subjects. The
649 method was based on SNIPE (Eskildsen et al., 2014).
650 5. Ledig-ALL: A combination of all features above.

651 Classifier: Random forest classifier.
652 Training data: 734 ADNI subjects.
653 Feature selection: Only for Ledig-MBL and Ledig-Grad. Ledig-MBL:
654 PCA and sparse regression using local binary intensity patterns and
655 mini mental-state examination (MMSE) scores of 292 ADNI subjects.
656 Ledig-Grad: elastic net sparse regression.
657 Confounder correction: –.
658 Automatic: Yes.
659 Computation time: 4 h per subject.

660Moradi et al.
661Algorithm: Moradi (Moradi et al., 2014).
662Features: VBM of GM.
663Classifier: Transductive SVM. Unsupervised domain adaptation was
664used to adapt the ADNI data to the 30 training sets. To increase both
665class separability and within-class clustering, low density separation
666was applied to both labeled and unlabeled data. The SVM used a
667graph-distance derived kernel. The classifications were repeated 101
668times and combined with majority vote. Classification was performed
669in two stages: 1) AD/CN classification, 2) a further division of AD/MCI
670and CN/MCI.
671Training data: 835 ADNI subjects.
672Feature selection: Elastic net logistic regression.
673Confounder correction: Yes. Age effects were removed with linear
674regression.
675Automatic: Yes.
676Computation time: 10 min per subject.

677Routier et al.
678Algorithm: Routier (Routier et al., 2014).
679Features: Features derived from shape models of 12 brain struc-
680tures: caudate nucleus, putamen, pallidum, thalamus, hippocampus
681and amygdala of each hemisphere. The segmentations were obtained
682with FreeSurfer. 3D triangular meshes of the shapes were obtained
683with a marching-cubes algorithm. Anatomical models of the shapes
684were built for AD, MCI and CN using Deformetrica12 (Durrleman et al.,
6852014). The shapemodels were registered to the test subjects, thus com-
686puting the likelihood of the data for each model.
687Classifier: Maximum-likelihood regression.
688Training data: 509 ADNI subjects.
689Thresholds were optimized on:

6901. Routier-adni: the ADNI data
6912. Routier-train: the 30 training sets

692Feature selection: –.
693Confounder correction: –.
694Automatic: Yes.
695Computation time: 4 days for training the anatomical models and
696additionally 11 h per subject.

697Sarica et al.
698Algorithm: Sarica (Sarica et al., 2014).
699Features: Volume and cortical thickness features (FreeSurfer).
700Classifier: Radial-basis kernel SVM. Pairwise classifications were
701combined with voting.
702Training data: 210 ADNI subjects. The 30 training sets were used for
703model selection.
704Feature selection: Three methods (correlation filter, random forest
705filter, and SVM wrapper) and their combination were evaluated. The
706models with best performance on the 30 training subjects were
707selected: the methods without ICV correction using the random forest
708filter (AD/CN, AD/MCI) and the correlation filter (CN/MCI).
709Confounder correction: Yes. Age and sexwere included as features.
710Experiments were performed with and without ICV correction.
711Automatic: Yes, except for the model selection.
712Computation time: 5 h per subject.
713Note: Three test subjects were excluded as FreeSurfer failed.

714Sensi et al.
715Algorithm: Sensi (Sensi et al., 2014).
716Features: Intensity and textural features of cuboid regions in the
717medial temporal lobe. The cuboid regionswere placed around the ento-
718rhinal cortex, perirhinal cortex, hippocampus, and parahippocampal

11 http://www.brain-development.org. 12 http://www.deformetrica.org.
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719 gyrus. In addition, two control regions that are relatively spared by AD
720 (rolandic areas) were placed. In each region, voxel intensities were nor-
721 malized for each tissue by the tissue mean calculated in an additional
722 cuboid region positioned around the corpus callosum in a reference
723 template. To obtain the features, the voxels in the cuboid volumes
724 were processedwith 18 filters (e.g., Gaussianmean, standard deviation,
725 range, entropy, Mexican hat) with different voxel radii.
726 Classifier: Radial-basis kernel SVM and random forest classifier,
727 combined by the weighted mean. Using probability density functions
728 estimated on the 30 training subjects, the output probabilities were
729 mapped to the classes.
730 Training data: 551 ADNI subjects + the 30 training subjects. For the
731 ADNI data, MCIc patients were included in the AD group.
732 Feature selection: Random forest classifier.
733 Confounder correction: –.
734 Automatic: Yes.
735 Computation time: 45 min per subject.

736 Smith et al.
737 Algorithm: Smith (Smith et al., 2014).
738 Features: Surface area, volume and fragility of a thresholded ROI
739 containingmainly theWM. The fragility originates fromnetwork theory
740 andmeasures how close the structure is from breaking apart into small-
741 er components.
742 Classifier: Multinomial logistic regression.
743 Training data: 189 ADNI subjects + the 30 training subjects.
744 Feature selection: –.
745 Confounder correction: Yes. Age was used as a feature. Separate
746 thresholds for males and females were used for the WM ROI.
747 Automatic: Yes, except for the optimization of the threshold for the
748 WM ROI.
749 Computation time: 7–24 min per subject.

750 Sørensen et al.
751 Algorithm: Sørensen (Sørensen et al., 2014).
752 Features: Five types of featureswere combined: 1) volumes of seven
753 bilaterally joined regions (amygdala, caudate nucleus, hippocampus,
754 pallidum, putamen, ventricles, whole brain; FreeSurfer), 2) cortical
755 thickness of four lobes and the cingulate gyrus (FreeSurfer), 3) the vol-
756 umeof both hippocampi segmentedwith amulti-atlas, non-local patch-
757 based segmentation technique (using 40 manual segmentations from
758 the Harmonized Hippocampal Protocol as atlases (Frisoni and Jack,
759 2011)), 4) two hippocampal shape scores (left and right) computed
760 by a Naive Bayes classifier on the principal components of surface land-
761 marks trained on ADNI and AIBL AD/CN data, 5) a hippocampal texture
762 score computed by a radial-basis kernel SVM on a Gaussian-filter-bank-
763 based texture descriptor trained on ADNI and AIBL AD/CN data.
764 Classifier: Regularized linear discriminant analysis (LDA).
765 Different priors were used:

766 1. Sørensen-equal: equal class priors
767 2. Sørensen-optimized: class priors optimized on the 30 training sub-
768 jects (pCN ¼ 1

8, pMCI ¼ 3
8, pAD ¼ 1

2).

769 Training data: 504 ADNI and 145 AIBL subjects.
770 Feature selection: –.
771 Confounder correction:Yes. Featureswere z-score transformed de-
772 pendent on the age. Volume features were explicitly normalized by di-
773 viding by ICV.
774 Automatic: Yes.
775 Computation time: 19 h per subject, of which 18 h were due to
776 FreeSurfer processing time.

777 Tangaro et al.
778 Algorithm: Tangaro (Tangaro et al., 2014).

779Features: Volume and cortical thickness features (FreeSurfer). Hip-
780pocampus segmentations were obtained with random forest classifica-
781tion based on Haar-like features.
782Classifier: Linear SVM. Pairwise classifications were combined by
783multiplication and normalization of the output probabilities.
784Training data: 160 ADNI subjects + the 30 training subjects
785Feature selection: –.
786Confounder correction: –.
787Automatic: Yes.
788Computation time: 13 h per subject, of which 12 h were due to
789FreeSurfer processing time.

790Wachinger et al.
791Algorithm: Wachinger (Wachinger et al., 2014a).
792Features: Volume, cortical thickness and shape features
793(FreeSurfer). For computation of shape features, a spectral shape de-
794scriptor (‘ShapeDNA’) was derived from volume (tetrahedral) and sur-
795face (triangular) meshes obtained from FreeSurfer labels with the
796marching cubes algorithm. This shape descriptor computes the intrinsic
797geometry with a method that does not require alignment between
798shapes (Reuter et al., 2006). Using 50 eigenvalues of the shape descrip-
799tor, two types of shape features were computed (Wachinger et al.,
8002014b): 1) the principal component for 44 brain structures
801(‘BrainPrint’), and 2) the shape differences between left and right for
802white matter, gray matter, cerebellum white matter and gray matter,
803striatum, lateral ventricles, hippocampus and amygdala.
804Classifier: Generalized linear model.
805Training data: 751 ADNI subjects + the 30 training subjects.
806Feature selection: Five methods were used:

8071. Wachinger-man: manual selection of ROIs.
8082. Wachinger-step1: stepwise selection using the Akaike information
809criterion on ADNI.
8103. Wachinger-step2: stepwise selection using the Akaike information
811criterion on ADNI and the provided training data.
8124. Wachinger-step1Norm: stepwise selection using the Akaike informa-
813tion criterion on ADNI with normalization by the Riemannian vol-
814ume of the structure.
8155. Wachinger-enetNorm: elastic net regularization with normalization
816by the Riemannian volume of the structure.

817Confounder correction: Yes. Agewas corrected for by linear regres-
818sion, volume measures were normalized by the ICV.
819Automatic: Yes.
820Computation time: 17.4 h per subject, of which 16.8 h were due to
821FreeSurfer processing.

822Results

823The results presented in this section are based on the 29 algorithms
824presented at the CADDementia workshop (MICCAI 2014 workshop
825section Q6).

826Classification performance

827Table 5 and Fig. 1 show the accuracies and TPFs for the algorithms.
828The algorithms are ranked by accuracy. The accuracies ranged from
82932.2% to 63.0%. As a three-class classification problem was analyzed,
830the accuracy for random guessing would be ~33.3%. If all subjects
831were estimated to be in the largest class (CN), the accuracy would be

832
n
CN
!n ¼ 129!

354 ¼ 36:4%. It can thus be observed that 27 out of the 29

833algorithms performed significantly better than guessing. The algorithm
834with the best accuracy was Sørensen-equal, with an accuracy of 63.0%.
835According to the McNemar test, Sørensen-equalwas significantly better
836than most other algorithms (p b 0.05) except for Sørensen-optimized
837(p = 0.23), Wachinger-enetNorm (p = 0.21),Moradi (p = 0.14), Ledig-
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838 ALL (p = 0.09), and Franke (p = 0.06). The TPFs had a large variability
839 between the algorithms, showing that the different algorithms chose
840 different priors for the classification. Appendix A lists the confusionma-
841 trices for all algorithms.
842 For 19 of the methods, output probabilities were submitted, en-
843 abling ROC-analysis. Table 6 and Fig. 2 show the overall AUC and the
844 per-class AUCs (AUC(ci)) for the algorithms ranked by AUC. The AUC
845 ranged from 50.4% to 78.8%. This was better than random guessing for
846 all algorithms except for one having an AUC of 50.4% (46.7%–54.6%).
847 The two algorithms by Sørensen et al. (Sørensen-equal, Sørensen-opti-
848 mized) had the highest AUC (78.8%), followed by the algorithm of
849 Abdulkadir (AUC = 77.7%). Fig. 3 shows the per-class ROC curves for
850 Sørensen-equal. For most algorithms, the per-class AUCs for CN (range:
851 54.1%–86.6%) and AD (range: 46.6%–89.2%) were higher than the

852overall AUC. Except for Smith, AUCMCI (range: 50.0%–63.1%) was always
853smaller than the overall AUC.
854For the AD and CN classes, the evaluated algorithms obtained rela-
855tively high values for TPF and AUC. However, TPF and AUC for the MCI
856class were lower than those for the other classes, indicating that classi-
857fication of MCI based onMRI is a difficult problem. This might be due to
858several factors including the heterogeneity of the MCI class and the use
859of the clinical diagnosis as reference standard (see Clinical applicability
860section).
861The test data consisted of three subsets of data from three centers
862(Table 2). Fig. 4 shows how the performances of the algorithms varied
863between the subsets provided by different centers. The performances
864on the UP data set were mostly higher than those using all data, but
865the variation in performance across algorithms was rather high. Perfor-
866mances on the VUMC data were slightly better than those for all data,
867and performances on the EMC data were slightly worse than those for
868all data.

869Feature extraction and classifiers

870As shown in Table 4, the algorithms used a wide range of ap-
871proaches. Out of the 29 methods, most methods included features
872based on volume (N = 19), 14 algorithms included features based on
873cortical thickness, 14 algorithms included features based on intensity
874(of which two algorithms used raw intensities and the rest more com-
875plex intensity relations), 9 algorithms included features based on
876shape, and 3 algorithms used voxel-based morphometry (VBM). Vol-
877ume, cortical thickness, intensity and shape features were often com-
878bined. The combination of volume, cortical thickness and intensity
879was most often used (N = 8). We noted from Fig. 5 that the perfor-
880mance differences between the different feature extraction strategies
881were small, but in general we observed that the best performances
882were achieved with VBM and the combination of volume and cortical
883thickness with either shape, intensity or both. Also the classifiers

t5:1 Table 5
t5:2 Accuracy and true positive fractions (TPFs) on the test data for the participating algorithms. CI = 95% confidence interval estimated with bootstrapping.

t5:3 Rank Algorithm Accuracy [%] (CI) TPFCN [%] (CI) TPFMCI [%] (CI) TPFAD [%] (CI)

t5:4 1 Sørensen-equal 63.0 (57.9–67.5) 96.9 (92.9–99.2) 28.7 (21.3–37.4) 61.2 (51.6–69.8)
t5:5 2 Sørensen-optimized 59.9 (54.8–64.7) 70.5 (62.8–77.8) 41.0 (33.3–50.0) 68.9 (59.6–77.2)
t5:6 3 Wachinger-enetNorm 59.0 (54.0–63.6) 72.1 (63.4–79.2) 51.6 (43.5–61.3) 51.5 (41.5–61.2)
t5:7 4 Ledig-ALL 57.9 (52.5–62.7) 89.1 (83.7–93.8) 41.0 (32.4–49.6) 38.8 (30.7–50.0)
t5:8 5 Moradi 57.6 (52.3–62.4) 57.4 (48.7–66.1) 59.8 (51.3–68.1) 55.3 (46.7–65.2)
t5:9 6 Franke 56.2 (50.8–61.3) 58.9 (50.4–67.5) 43.4 (34.8–51.7) 68.0 (58.8–77.1)
t5:10 7.5 Sensi 55.1 (50.0–60.2) 71.3 (63.6–78.8) 40.2 (31.2–49.6) 52.4 (42.7–62.0)
t5:11 7.5 Ledig-CORT 55.1 (49.7–59.9) 68.2 (60.5–76.0) 45.1 (35.3–53.4) 50.5 (41.2–60.5)
t5:12 9.5 Ledig-GRAD 54.0 (48.9–59.3) 87.6 (81.7–92.6) 37.7 (29.3–47.5) 31.1 (22.4–40.4)
t5:13 9.5 Wachinger-step1 54.0 (48.9–59.0) 68.2 (60.2–75.4) 41.0 (31.9–50.9) 51.5 (42.2–61.1)
t5:14 12.5 Wachinger-step1Norm 53.7 (48.6–58.8) 63.6 (54.9–71.9) 47.5 (38.4–56.6) 48.5 (39.6–59.1)
t5:15 12.5 Sarica 53.7 (48.3–58.8) 65.9 (57.4–74.2) 39.3 (30.0–48.2) 55.3 (44.9–64.9)
t5:16 12.5 Wachinger-step2 53.7 (47.5–58.8) 66.7 (58.1–74.1) 38.5 (30.1–48.1) 55.3 (45.5–65.0)
t5:17 12.5 Abdulkadir 53.7 (48.3–58.2) 45.7 (37.0–53.6) 65.6 (56.1–73.0) 49.5 (39.4–58.8)
t5:18 15 Ledig-MBL 53.4 (47.7–57.9) 82.9 (76.0–88.7) 43.4 (35.1–52.9) 28.2 (20.2–37.4)
t5:19 16 Wachinger-man 53.1 (47.7–57.9) 61.2 (53.5–69.6) 60.7 (51.7–70.0) 34.0 (25.7–44.7)
t5:20 17.5 Eskildsen-ADNI1 52.0 (46.6–56.8) 65.1 (56.9–73.2) 32.0 (24.1–40.9) 59.2 (49.5–68.3)
t5:21 17.5 Eskildsen-FACEADNI1 52.0 (46.9–57.1) 65.1 (56.6–73.1) 36.1 (28.1–45.5) 54.4 (44.6–63.6)
t5:22 19 Eskildsen-Combined 51.1 (45.5–56.2) 64.3 (56.2–72.3) 35.2 (27.1–44.3) 53.4 (43.0–62.9)
t5:23 20 Dolph 49.7 (44.6–54.8) 84.5 (77.9–90.4) 23.0 (16.4–31.2) 37.9 (28.9–47.3)
t5:24 21 Routier-adni 49.2 (43.5–54.2) 94.6 (89.8–97.7) 11.5 (6.2–17.7) 36.9 (27.4–46.5)
t5:25 22.5 Eskildsen-FACEADNI2 48.3 (43.2–53.4) 48.8 (40.5–57.4) 42.6 (33.9–51.3) 54.4 (45.5–64.0)
t5:26 22.5 Routier-train 48.3 (42.9–53.4) 48.1 (39.8–56.9) 21.3 (14.8–29.0) 80.6 (72.2–87.3)
t5:27 24.5 Ledig-VOL 47.7 (42.1–52.8) 66.7 (57.1–74.1) 36.9 (28.9–45.9) 36.9 (28.6–47.2)
t5:28 24.5 Eskildsen-ADNI2 47.7 (42.1–52.8) 59.7 (51.2–68.4) 38.5 (29.9–47.3) 43.7 (33.7–53.8)
t5:29 26 Amoroso 46.9 (41.5–52.3) 67.4 (58.5–75.2) 42.6 (33.6–51.1) 26.2 (18.3–35.4)
t5:30 27 Tangaro 46.6 (41.0–51.4) 68.2 (60.2–76.5) 37.7 (29.2–46.3) 30.1 (21.7–39.0)
t5:31 28 Cárdenas-Peña 39.0 (33.9–43.8) 50.4 (41.5–59.1) 28.7 (21.6–38.5) 36.9 (27.4–46.8)
t5:32 29 Smith 32.2 (27.4–36.7) 48.1 (39.6–57.1) 20.5 (13.9–28.3) 26.2 (18.3–35.0)

Fig. 1.Accuracy and TPFs on the test data for the participating algorithms. For the accuracy,
the 95% confidence interval is shown in gray.
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884 differed between the algorithms: 14 algorithms used regression, 7 algo-
885 rithms used an SVM classifier, 6 used a random forest classifier, 2 used
886 linear discriminant analysis (LDA) and 1 used a neural network for clas-
887 sification. Performance differences between the different classifiers
888 seemed to be small. It should be noted, however, that one should be
889 careful in drawing conclusions based on Table 4 or Fig. 5, as there are
890 multiple differences between the algorithms.
891 Eight teams incorporated age effects in their algorithms, either by
892 explicitly including age in the model (Franke and Gaser, 2014; Sarica
893 et al., 2014; Smith et al., 2014) or by eliminating age effects using age-
894 dependent normalization (Sørensen et al., 2014) or regression
895 (Abdulkadir et al., 2014; Eskildsen et al., 2014; Moradi et al., 2014;
896 Wachinger et al., 2014a). Three teams used the same strategy to correct
897 for sex (Abdulkadir et al., 2014; Eskildsen et al., 2014; Sarica et al.,
898 2014), two teams trained separate models for males and females
899 (Franke and Gaser, 2014; Smith et al., 2014).

900 Training data

901 Most algorithms, except for Dolph, were trained on more training
902 data than only the 30 provided data sets. Mainly data from ADNI and
903 AIBL were used. Fig. 6 shows the relationship between the number of
904 training data sets and the test set performance. Most algorithms used
905 600–800 data sets for training.

906Fig. 7 shows the relationship between the accuracy of the algorithms
907on the test set and the accuracy on the 30 provided training data sets as
908reported in the workshop papers. The figure shows that almost all algo-
909rithms overestimated accuracy on the training set. However, some of
910the methods explicitly trained on the 30 provided data sets to ensure
911optimal performance on the test set. It should be noted that different
912strategies were used to evaluate the training set accuracy, i.e., train-
913test evaluation or cross-validation.

914Discussion

915Evaluation framework

916Although the literature on computer-aided diagnosis of dementia
917has shown promising results, thorough validation of these algorithms
918for clinical use has rarely been performed. To enable proper validation
919of the algorithms, we addressed the following factors in our evaluation
920framework: comparability, generalizability and clinical applicability.

921Comparability
922Comparison of different state-of-the-art algorithms is difficult, as
923most studies use different evaluation data sets, validation strategies
924and performance measures. According to the literature, little has been

t6:1 Table 6
t6:2 Area under the ROC-curve (AUC) on the test data for the participating algorithms that computed probabilistic outputs. CI = 95% confidence interval estimated with bootstrapping.

t6:3 Rank Algorithm AUC [%] (CI) AUCCN [%] (CI) AUCMCI [%] (CI) AUCAD [%] (CI)

t6:4 1.5 Sørensen-equal 78.8 (75.6–82.0) 86.3 (81.8–89.3) 63.1 (56.6–68.3) 87.5 (83.4–91.1)
t6:5 1.5 Sørensen-optimized 78.8 (75.5–82.1) 86.3 (81.9–89.3) 62.7 (56.8–68.4) 86.7 (82.3–90.4)
t6:6 3 Abdulkadir 77.7 (74.2–81.0) 85.6 (81.4–89.0) 59.9 (54.1–66.4) 86.7 (82.3–90.3)
t6:7 4 Wachinger-enetNorm 77.0 (73.6–80.3) 83.3 (78.5–87.0) 59.4 (52.9–65.5) 88.2 (83.8–91.4)
t6:8 5 Ledig-ALL 76.7 (73.6–79.8) 86.6 (82.7–89.8) 59.7 (53.3–65.1) 84.9 (79.7–88.7)
t6:9 6 Ledig-GRAD 75.4 (72.4–78.6) 85.6 (81.5–88.9) 60.3 (53.9–66.5) 81.7 (76.3–86.1)
t6:10 7 Ledig-MBL 75.2 (72.0–78.1) 82.5 (77.8–86.0) 57.3 (50.9–63.6) 86.4 (81.4–89.9)
t6:11 8 Wachinger-step1 74.6 (70.8–78.1) 79.1 (73.5–83.1) 55.0 (48.5–61.4) 89.2 (85.3–92.3)
t6:12 9.5 Wachinger-step1Norm 74.3 (70.5–77.9) 79.3 (74.1–83.5) 55.5 (48.5–61.6) 87.7 (83.7–91.1)
t6:13 9.5 Wachinger-man 74.3 (70.9–77.9) 80.6 (75.7–84.9) 56.3 (49.7–63.0) 86.1 (81.7–90.0)
t6:14 11 Sensi 73.8 (70.2–77.5) 81.7 (77.1–85.8) 55.0 (48.8–61.0) 83.9 (78.8–87.7)
t6:15 12 Ledig-CORT 73.7 (69.9–77.2) 79.6 (75.0–84.2) 58.9 (52.9–64.9) 82.4 (76.7–87.3)
t6:16 13 Wachinger-step2 72.7 (68.9–76.4) 79.3 (74.0–83.5) 51.9 (45.3–58.7) 86.5 (81.9–90.3)
t6:17 14 Ledig-VOL 68.4 (64.5–72.5) 75.7 (70.3–81.0) 50.1 (44.1–56.4) 79.0 (73.3–83.5)
t6:18 15 Amoroso 67.2 (63.3–71.3) 73.4 (67.8–78.7) 56.0 (49.7–61.9) 72.3 (66.2–77.5)
t6:19 16 Tangaro 67.1 (63.2–71.0) 73.1 (67.8–78.0) 52.6 (45.9–58.6) 75.8 (70.2–80.6)
t6:20 17 Dolph 63.0 (59.6–67.2) 66.2 (61.3–70.3) 55.4 (50.0–60.0) 65.8 (60.6–71.3)
t6:21 18 Cárdenas-Peña 55.9 (51.2–59.9) 57.8 (51.6–63.4) 50.0 (43.9–57.1) 59.8 (53.5–65.7)
t6:22 19 Smith 50.4 (46.7–54.6) 54.1 (48.0–60.0) 50.6 (45.0–57.1) 46.6 (40.0–53.6)

Fig. 2. Area under the ROC-curve (AUC) on the test data for the participating algorithms.
For total AUC, the 95% confidence interval is shown in gray.

Fig. 3. The receiver-operating-characteristic (ROC) curve on all test data for the best
performing algorithm: Sørensen-equal.
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925 done in comparing different algorithms using the same data and meth-
926 odology. We found two studies that compared multiple algorithms
927 (Cuingnet et al., 2011; Sabuncu and Konukoglu, 2014), of which the
928 work of Cuingnet et al. (2011) does not allow addition of newmethods
929 to the comparison. For our evaluation framework, we aimed to increase
930 comparability of the evaluated algorithms by making the testing data
931 set and the validation scripts publicly available. Effortwasmade to com-
932 pose a largemulti-center data set and to define good evaluation criteria
933 for multi-class classification. One of the main advantages of this evalua-
934 tion framework is that it can be used by every researcher: anyone who
935 developed a new algorithm can download the data and submit results
936 via our web-based framework13. Both established and state-of-the-art
937 algorithms can be evaluated and compared to algorithms evaluated by
938 others. The framework remains open for new submissions.
939 Since the main question that we aimed to address with this frame-
940 work is how well the current state-of-the-art methods would perform
941 in clinical practice, we specifically chose to use few constraints for the
942 participating methods. Therefore, the framework allows to compare al-
943 gorithms performing the full analysis, from image to diagnosis. This in-
944 troduces a lot of variation in the participating algorithms. Participants
945 had a lot of freedom in their choices for the training data and the
946 methods for image processing and classification. Therefore, in
947 discussing themethodswewere not able to completely explain the per-
948 formance differences betweenmethods in all cases. For example, a very
949 good method that uses a small amount of training data may have the
950 sameperformance as anothermethod that isworse but usesmore train-
951 ing data. With the chosen set-up, it is also not possible to assess which
952 part of the algorithm led to the increase in performance. These include
953 a multitude of aspects, such as feature extraction, feature selection,
954 and classification.
955 At present, a similar challenge is running: the Alzheimer's Disease
956 Big Data (ADBD) DREAM challenge #114, of which sub-challenge 3 is
957 similar to the work presented in this paper. In the ADBD DREAM chal-
958 lenge, participants are asked to build a predictive model for MMSE
959 and diagnosis based on T1w MRI data and other variables (i.e., age at
960 baseline, years of education, sex, APOE4 genotype, imputed genotypes).
961 One of the differenceswith our challenge is that the ADBDDREAM chal-
962 lenge supplies a fixed training set from the ADNI database, instead of
963 leaving this open to the participants. Two test sets, both consisting of
964 107 subjects from the AddNeuroMed database (Lovestone et al., 2009)

965are provided. The ADBD DREAM challenge generally made the same
966choices for their evaluation framework, as they use the same diagnostic
967groups and reference standard. Preliminary results for the ADBD
968DREAM challenge are available from their web site. The best predictive
969model for MMSE yielded a Pearson correlation of 0.602, and the best
970model for diagnosis yielded an accuracy of 60.2%. The algorithm that
971was best ranked on average used Gaussian process regression with 20
972image features, APOE4 and education (Fan and Guan, 2014).

973Generalizability
974For new methods, it is important to know how they would general-
975ize to a new, clinically representative data set. Often cross-validation is
976used to validate the performance of machine learning algorithms
977(Falahati et al., 2014). Although cross-validation is very useful, especial-
978ly in the situation when not many scans are available, it optimizes per-
979formance on a specific population and can therefore overestimate
980performance on the general population (Adaszewski et al., 2013). In ad-
981dition, algorithms are often tuned to specific cohorts which limit their
982generalizability (Adaszewski et al., 2013). When generalizing an algo-
983rithm to other data, variability in the data acquisition protocol, the pop-
984ulation or the reference standard can be problematic and can decrease
985performance (Sabuncu and Konukoglu, 2014). To evaluate generaliz-
986ability of the algorithms, which is certainly required for clinical imple-
987mentation, we used a large, new and unseen test set in this work. This
988data set consisted of scans acquired with GE (n = 354) and Siemens
989(n = 30) scanners, so we do not have information on the performance
990of the algorithms on data from other scanners. However, the data set
991had some differences in scanning parameters, which allows evaluation
992of the generalizability of the algorithms to different scanning protocols.
993The diagnostic labels of the test set were blinded to the authors of the
994algorithms, which is different from the benchmark papers by Cuingnet
995et al. (2011) and Sabuncu and Konukoglu (2014). The importance of
996an independent test is also confirmed by Fig. 7, which shows that all al-
997gorithms overestimated the performance by cross-validating or tuning
998on the training set.
999Another factor providing insight into the generalizability of the per-
1000formance results was the size of the test set. The test set was quite large,
1001consisting of 354 subjects. Not many other studies used an unseen test
1002set. For studies using cross-validation, usually 500–800 data sets from
1003the ADNI database are used (Cuingnet et al., 2011; Falahati et al.,
10042014; Sabuncu and Konukoglu, 2014). The ADBD DREAM challenge
1005uses an unseen test set, but much smaller than the one used here (107
1006subjects).

13 http://caddementia.grand-challenge.org.
14 http://www.synapse.org/#!Synapse:syn2290704/.

(b)(a)

Fig. 4. Accuracy (a) and area under the ROC-curve (AUC) (b) on the test data for the participating algorithms on all data (N = 354) and on the three subsets of test data from different
centers: VUMC (N= 166), EMC (N= 161), UP (N = 27). For accuracy and AUC on all data, the 95% confidence interval is shown in gray.
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1008 For this evaluation framework, the decision was made to split our
1009 multi-center data set into a small (n = 30) training set and a large
1010 test set. This choice resembles a clinical setting, where in a certain hos-
1011 pital only a small training data set is available. On the other hand, a lot of
1012 training data are available from publicly available databases like the
1013 ADNI and AIBL, which can be used for training the algorithms.
1014 As reference standard for evaluation of the algorithms, the current
1015 clinical diagnosis criteria for AD (McKhann et al., 2011) and MCI
1016 (Petersen, 2004) were used, which is a common practice in studies of
1017 computer-aided diagnosis methods (Cuingnet et al., 2011; Klöppel
1018 et al., 2008; Falahati et al., 2014; Davatzikos et al., 2008a; Duchesne
1019 et al., 2008; Fan et al., 2008a,b; Gray et al., 2013; Koikkalainen et al.,
1020 2012; Magnin et al., 2009; Vemuri et al., 2008; Wolz et al., 2011).
1021 Ground truth diagnosis of dementia can only be assessed using autopsy
1022 and is therefore only rarely available. Of the previously mentioned pa-
1023 pers, only one paper included one group of 20 AD patients with an au-
1024 topsy confirmed diagnosis (Klöppel et al., 2008). Amyloid imaging
1025 (Klunk et al., 2004) has also proven to be a good biomarker for AD, as
1026 subjects with positive amyloid showed to have a more rapid disease
1027 progression (Jack et al., 2010). However, availability of these data is
1028 also very limited. The limitation of using clinical diagnosis as the ground
1029 truth is that itmay be incorrect. In the literature, the reported accuracies
1030 of the clinical diagnosis of AD, based on the old criteria (McKhann et al.,
1031 1984), compared to postmortem neuropathological gold standard diag-
1032 nosis were in the range of 70–90% (Mattila et al., 2012; Lim et al., 1999;
1033 Petrovitch et al., 2001; Kazee et al., 1993). Although the clinical diagno-
1034 sis has limitations, we believe that it is the best available reference stan-
1035 dard. One should also note that this challenge does not aim to assess the
1036 diagnostic accuracy of structuralMRI, asMRI itself is also included in the
1037 criteria for clinical diagnosis. Instead, we focus on comparing computer-
1038 aided diagnosis algorithms on an unseen blinded test setwith standard-
1039 ized evaluation methods using the clinical diagnosis as the best avail-
1040 able reference standard.
1041 This work interprets the differentiation of patients with AD,MCI and
1042 controls as a multi-class classification problem. This might not be

1043optimal as there is an ordering of the classes, i.e., classification of an
1044AD patient as an MCI patient might be less bad than classifying as a
1045healthy person. However, addressing only binary problems, such as
1046AD/CN classification, does not reflect the clinical diagnosis making and
1047results in a too optimistic performance estimate. Because the current
1048clinical diagnosis uses the three classes, we chose to focus on multi-
1049class classification in this challenge and did not use the ordering in the
1050evaluation.
1051According to the criteria of Petersen (2004) and similar to ADNI, only
1052MCI patients with memory complaints, amnestic MCIs, were included in
1053the data set. For classification, all MCI patients were considered to be a
1054single group which is according to current clinical practice Petersen
1055(2004). This is debatable, since MCI patients are known to be a clinically
1056heterogeneous group with different patterns of brain atrophy (Misra
1057et al., 2009), of which some cases will not progress to AD. From this
1058point of view, it can be questioned whether MCI is a diagnostic entity or
1059whether MCI describes a stage on a continuum from cognitively normal
1060to AD. If MCI is actually an intermediate between the two other classes,
1061theAD/CNborder in three-class classificationwould be also subject to dis-
1062cussion. Although the usage of the MCI definition is advised for diagnosis
1063in clinical practice (Petersen, 2004), the borders between AD/MCI and
1064MCI/CN based on diagnostic criteria can be unclear. Because of those un-
1065clear borders and the heterogeneity in theMCI class, classification accura-
1066cies are expected to be reduced. The results of the evaluated algorithms
1067confirmed that distinguishing MCI from AD and CN is difficult. The AUC
1068for all algorithms was the lowest for the MCI class and in most cases
1069also TPF was the lowest for MCI. Despite these limitations, the same
1070choices for the reference standard, classification, and the MCI group
1071were made in the ADBD DREAM challenge. Moreover, since MCI is still
1072used as diagnostic label in current clinical practice, having an objective
1073and automated algorithm that makes such diagnosis based on structural
1074MRI, would already be useful, for example, as a second opinion.
1075For facilitating clinical implementation of the algorithms, itwould be a
1076great benefit to make the evaluated algorithms publicly available for en-
1077abling validation on other data without the need for reimplementation.
1078In our evaluation framework, this is not yet possible. Instead, in our

(a) (b)

Fig. 6. The number of training data sets used plotted against the test set performance of every algorithm: (a) accuracy, (b) area under the ROC-curve (AUC). The error bars show the 95%
confidence interval.

Fig. 5.Mean accuracy and area under the ROC-curve (AUC) on the test data for the different types of features used by the algorithms. The error bars show the standard deviation.
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1079 framework, all teams were encouraged to make a step-by-step imple-
1080 mentation guide15 to make it possible to run the submitted algorithms
1081 on other data sets.

1082 Evaluated algorithms and results

1083 The best performing algorithm (Sørensen-equal: accuracy = 63.0%,
1084 AUC=78.8%)wasbased on a combination of features and used a simple
1085 linear classifier (LDA). Also, regarding the other top-ranked algorithms,
1086 the best performances were achieved by algorithms that incorporated
1087 features describing different properties of the scans. Although the per-
1088 formance differences between the different feature extraction strategies
1089 were small, algorithms that used shape or intensity features in addition
1090 to regional volumes and thickness performed slightly better than algo-
1091 rithms solely based on shape features or on volume features. The
1092 VBM-based methods also performed well. Different multivariate analy-
1093 sis techniques were used by the algorithms, mainly regression, SVM,
1094 and random forest classifiers. No trend in the best performing type of
1095 classifier could be found.
1096 Since hardly any results for three-class classification have been re-
1097 ported, we cannot compare with representative results from the litera-
1098 ture. The TPFs and AUCs for the AD and CN classes in this work are a bit
1099 lower than those reported previously for AD/CN classification (Falahati
1100 et al., 2014), but we expect that this is mainly due to the additional MCI
1101 class in the classification and its heterogeneity. The ADBD DREAM chal-
1102 lenge also evaluated three-class classification, and it reported perfor-
1103 mances similar to those of this study (see Comparability sectionQ7 ).
1104 The methods Sørensen-equal and Sørensen-optimized were ranked
1105 highest both based on accuracy and AUC. In general, the rankings by
1106 the two performance measures were similar, but there were some ex-
1107 ceptions. Abdulkadir, for example, ranked much higher based on AUC
1108 (rank = 3) than on accuracy (rank = 12.5), which means that this
1109 method was capable of distinguishing the classes with high sensitivity
1110 and specificity at different cut-off points. However, for measuring the
1111 accuracy, not the optimal cut-off point was chosen by the classifier.
1112 The accuracy of this method could be improved by optimizing the
1113 class priors used by the classifier. For classification, it is generally as-
1114 sumed that the training data and its class priors are representative for
1115 the test data. Depending on the class distributions of the training data
1116 used, this assumption on class priors might not always have been justi-
1117 fied. On the other hand, it is difficult to correct for differences in class
1118 priors, as the distribution of the test set is often unknown. Of the

1119participating teams, two specifically took the issue of class priors into
1120account. Eskildsen et al. removed the class unbalance of the training
1121set using a resampling technique (Eskildsen et al., 2014; Chawla et al.,
11222002). Sørensen et al. experimented with two sets of class priors:
1123equal class priors and class priors optimized on the 30 training subjects
1124(Sørensen et al., 2014). However, formost algorithms accuracy andAUC
1125were similar, indicating that reasonable assumptions on the class priors
1126were made.
1127The provided data set consisted of structural MRI scans from three
1128centers. We noticed a small performance difference between the three
1129subsets. The performance on the UP subset was the highest, but this
1130might be explained by chance given the small size of the UP data set
1131(n = 27 in the test set, n = 3 in the training set) and a slight selection
1132bias towardsmore clinically clear-cut cases. Between the two other sub-
1133sets, a minor performance difference could be noted. The performance
1134differences might be caused by slight differences in inclusion criteria,
1135used scanners and scanning protocols between the centers, emphasiz-
1136ing the importance of a multi-center test set.
1137The size of the training set is known to have a large influence on the
1138performance of the classifier (Falahati et al., 2014). Although this study
1139does not provide enough information to draw a valid conclusion, as we
1140evaluated only 29 algorithms with the majority of training sets
1141consisting of 600–800 subjects,we see a slight positive relation between
1142the number of training data sets and the test set performance.
1143Themean age of ADpatients in the used data setwas 66.1±5.2 years,
1144whereas the age for AD patients in the ADNI cohorts that were used by
1145many algorithms for training was about 10 years higher (Abdulkadir
1146et al., 2014; Amoroso et al., 2014; Eskildsen et al., 2014; Ledig et al.,
11472014; Sarica et al., 2014; Sensi et al., 2014; Sørensen et al.,
11482014;Wachinger et al., 2014a). Although the same diagnosis criteria
1149were used in both cohorts, this age difference is most probably due to se-
1150lection bias. The used dataset consists of clinical data representing the
1151outpatient clinic population, whereas ADNI consists of research data. For
1152clinical practice, MRI may be used more conservatively. In addition,
1153there is a referral bias towards younger patients because the VUMC and
1154the EMC are tertiary centers specialized in presenile dementia. This age
1155difference between training and test datamight havehadanegative effect
1156on the performances found in this study. To take this into account, eight of
1157the 15 teams incorporated age effects in their algorithms.

1158Recommendations for future work

1159This challenge provided insight on the best strategies for computer-
1160aided diagnosis of dementia and on the performance of such algorithms
1161on an independent clinically representative data set. However, for this
1162challenge, specific choices for the evaluation framework were made.
1163Therefore, for clinical implementation of such algorithms, more valida-
1164tion studies that explore variations of this challenge are necessary.
1165A limitation of this challenge is that the clinical diagnosis is used as
1166reference standard. For the clinical diagnosis, MCI is used as a diagnostic
1167entity; it could however be questioned whether this can exist as sepa-
1168rate diagnosis next to AD. In addition, the accuracy of the clinical diag-
1169nosis is limited, but data sets with better reference standards are
1170scarce. The best reference standard is the postmortem diagnosis based
1171on pathology, which is the ground truth for AD diagnosis. A good alter-
1172native would be a reference standard based on the clinical diagnosis in-
1173cluding amyloid biomarkers or a long-term follow-up. For a validation
1174study, we strongly recommend to have an independent test set with
1175blinded diagnostic labels to promote generalizability.
1176In this challenge, classification was based on structural MRI using
1177subject age and sex as the only additional information. For a future chal-
1178lenge in which ground truth diagnosis is used for reference, it would be
1179very interesting to use all available clinical data in addition to structural
1180MRI as input for the computer-aided diagnosis algorithms. For the cur-
1181rent challenge, this was not yet useful as the reference standard was15 http://caddementia.grand-challenge.org/wiki.

Fig. 7. Accuracies for each algorithm estimated on the provided training data plotted
against the final accuracy. The error bars show the 95% confidence interval on the test
data. The black line (y = x) indicates the expected relationship.
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1182 based directly on these clinical data. For structural MRI, this is not a
1183 problem as it is only used qualitatively in clinical diagnosis making.
1184 For the currentwork, we adopted hardly any constraints resulting in
1185 a wide range of participating algorithms. To aid the understanding of
1186 the influence of certainmethodological choices on the algorithmperfor-
1187 mance, new projects could decide to focus on comparing specific ele-
1188 ments of the algorithms.
1189 We cannot be sure that the included algorithms are the best current-
1190 ly available. Although this challengewas broadly advertised, quite some
1191 effort from participants was required which may have kept some re-
1192 searchers from participating. Of the teams that submitted a proposal,
1193 two thirds did not participate in the challenge, possibly due to lack of
1194 time or resources. To reach a wider audience in future challenges, orga-
1195 nizers could reduce the effort required fromparticipants, for example by
1196 providing precomputed features.
1197 Another interesting problem to address in a future challenge is
1198 that of differential diagnosis of AD and other types of dementia
1199 (e.g., frontotemporal dementia (Du et al., 2006; Davatzikos et al., 2008b;
1200 Raamana et al., 2014) or Lewy body dementia (Lebedev et al., 2013)). In
1201 addition, instead of evaluating diagnostic algorithms, evaluation of prog-
1202 nostic algorithmswould be very useful. Future challenges could therefore
1203 evaluate the classification of MCI patients that convert to AD andMCI pa-
1204 tients that do not convert to AD within a certain time period.
1205 Lastly, newprojects could request their participants tomake their al-
1206 gorithms publicly available to facilitate clinical implementation of the
1207 algorithms for computer-aided diagnosis.

1208 Conclusion

1209 We presented a framework for the comparison of algorithms for
1210 computer-aided diagnosis of AD and MCI using structural MRI data and
1211 used it to compare 29 algorithms submitted by 15 research teams. The
1212 framework defines evaluation criteria and provides a previously unseen
1213 multi-center data set with the diagnoses blinded to the authors of the al-
1214 gorithms. The results of this framework therefore present a fair compari-
1215 son of algorithms formulti-class classification of AD,MCI and CN. The best
1216 algorithm, developedby Sørensen et al., yielded an accuracy of 63%andan
1217 AUCof 78.8%. Although the performance of the algorithmswas influenced
1218 by many factors, we noted that the best performance was generally
1219 achieved by methods that used a combination of features.
1220 The evaluation framework remains open for new submissions to
1221 be added to the ranking. We refer interested readers to the web site
1222 http://caddementia.grand-challenge.org, where instructions for partici-
1223 pation can be found.
1224 We believe that public large-scale validation studies, such as this
1225 work, are an important step towards the introductionof high-potential al-
1226 gorithms for computer-aided diagnosis of dementia into clinical practice.
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1282Q9 Appendix A. Confusion matrices of the algorithms
1283

t7:1

t7:2 Sørensen-equal True class Wachinger-step1Norm True class Routier-adni True class
t7:3 CN MCI AD CN MCI AD CN MCI AD
t7:4 Hypothesized class CN 125 64 15 Hypothesized class CN 82 49 7 Hypothesized class CN 122 87 42
t7:5 MCI 3 35 25 MCI 47 58 46 MCI 7 14 23
t7:6 AD 1 23 63 AD 0 15 50 AD 0 21 38
t7:7 Sørensen-optimized True class Sarica True class Eskildsen-FACEADNI2 True class
t7:8 CN MCI AD CN MCI AD CN MCI AD
t7:9 Hypothesized class CN 91 37 5 Hypothesized class CN 85 43 11 Hypothesized class CN 63 31 6
t7:10 MCI 33 50 27 MCI 41 48 34 MCI 56 52 41
t7:11 AD 5 35 71 AD 3 29 57 AD 10 39 56
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